

T2-A6 NHRA Severe Weather Impact Prediction Sector Partner Engagement Project

Overview

Focused on impact from two hazards:

- 1. Wind for large-scale systems
- 2. Severe thunderstorms involving wind, hail and/or rain

Research Questions

- 1. How can impact- and exposure-based forecasts be designed to inform decision making for planning, preparedness and response? What decisions and outcomes will be improved?
- 2. What different types of information (and in what format) are required by different user groups (e.g. a planning officer or a first-responder)?

The Impact Triangle

Impact

HAZARD

 Location-based asset information

Geoscience Australia

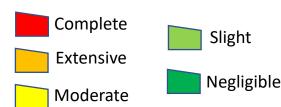
Australian Exposure Information Platform (AEIP)

This project – how do response agencies want potential impact to be communicated?

Asset vulnerability – Location and characteristics including structural, economic and demographic.

Geoscience Australia databases

National Hazard Impact and Risk Service (NHIRS)

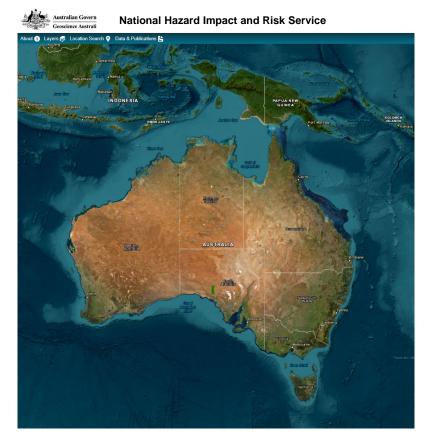

Map-based depiction of potential impacts from forecast weather events (automatic assessment service)

Large-scale winds

Severe thunderstorm

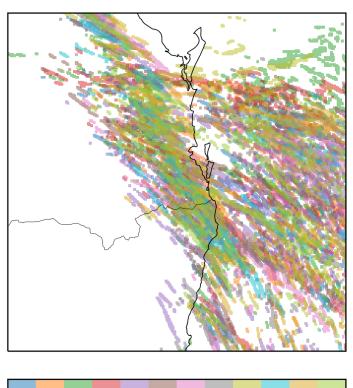
Hazard forecasts from **Bureau of Meteorology**

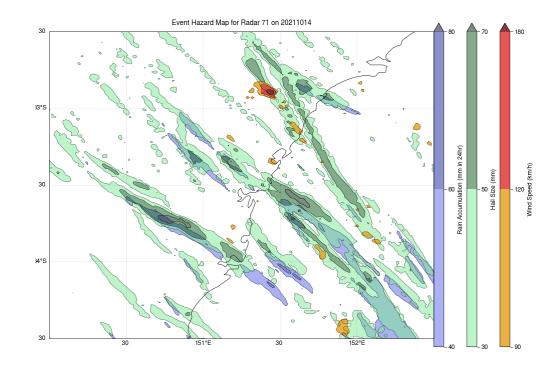
Damage State

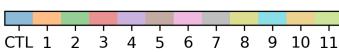


Geoscience Australia Capability

Geoscience Australia







Bureau of Meteorology – Thunderstorm Footprint Exposure

Forecast of potential thunderstorm footprint (out to 1.5 days) can alert users to potential impact (exposure estimates)

Radar-diagnosed storm hazard footprint for rain, hail and wind (Diagnosis)

Research Objectives

- 1. Engage sector partners to better understand their information requirements for large scale wind (LSW) impact-based forecasting and Severe Thunderstorm (STS) exposure.
- 2. Better understand how modelling outputs can be used to improve decision making, as well as the communication and information needs required by different end-user groups.
- 3. Provide **guidance and direction** for improving severe weather impact-based forecasting, so that impact information is useful, usable and used by the emergency services sector.
- 4. Provide clarity on the **scientific and technical developments** required to deliver **fit-for-purpose products**, **services and capabilities**, identify new research opportunities as well as identify opportunities to align or connect with other relevant research activities currently underway.

Project Team

Project Management Committee

Dr Kat Haynes, NHRA
Craig Arthur, Geoscience Australia
Harald Richter, Bureau of Meteorology
Liza Gelt, Collaborative Consulting Co

Project Delivery Team Collaborative Consulting Co

Liza Gelt
Dr Michael Rumsewicz
Rosie Tran

Internal Quality Assurance Dr Matt Haynes Andrew Stark

