

STREAM 2 WORKSHOP 2

Community risk assessment

Dr Nader Naderpajouh Dr Aaron Opdyke Ali Zolghadr University of Sydney **Sara Morgan** NSW State Emergency Service

@hazardsresearch

#NHRF23

We acknowledge the tradition of custodianship and law of the Country on which the University of Sydney campuses stand. We pay our respects to those who have cared and continue to care for Country.

Community Risk Assessment

100

2nd May, 2023

Dr Nader Naderpajouh Associate Head of School, Senior Lecturer The University of Sydney

Ť

Project Team

The University of Sydney

- Dr Nader Naderpajouh
- Prof David Schlosberg,
- Dr Aaron Opdyke,
- Dr Floris Van Ogtrop,
- Prof Amanda Howard,
- A/Prof Hao Zhang,
- Dr Jodie Bailie,
- Dr Ali Hadigheh,
- Prof Mary Crock,
- A/Prof Petr Matous,
- A/Prof Willem Vervoort
- Ali Zolghadr

New South Wales State Emergency Service

- Sara Morgan
- Melissa Cooper

Natural Hazard Research Australia

- Dr Kat Haynes

Practical significance – Need to change:

- Agencies are at different stages of a moderate to significant revision

Theoretical significance – Need to reflect complexities:

- Multi-hazard scenarios
- Multi-stakeholder scenarios
- Dynamic scenarios
- Consideration of vulnerability and resilience

Systematic literature review

- Started from key literature to establish the concepts
- Keywords used:
 - "community risk assessment" 47 manuscripts

Empirical study: interviews with 29 individuals from a range of agencies and organisations across the country

- Exposure data
- Hazard data
- Vulnerability data
- Data for identified risk elements

Main Outputs

- Guideline for community risk assessment development
- Alternative approaches
 - Based on tables of the synthesis of practice and literature
- Principles
 - From empirical study
- Can be used by users based on their needs
 - What are the range of potential approaches and their capabilities?
 - How can we innovate and do it differently?

Ref	Disaster risk(s)	Definition of risk	Risk element assess	sment method and (ou				Risk assessment approach
			Hazard (H)	Exposure (E)	Vulnerability (V)	Other	Risk	
(Brink and Davidson, 2015)	Earthquake	R = f(H, V, RE)	Monte Carlo simulation with importance sampling (probabilistic ground motion maps)	-	Fragility analysis (fragility curves for building types)	Resilience (RE): Weighted sum (household socioeconomic resilience index)	Joint probability distribution (damage exceedance probability curves)	Hybrid: Statistical/index- based
(Cai et al., 2019)	Flood	R = f(H, V, E)	Hydrodynamic simulation (inundation depth, inundation area, and inundation duration)	GIS analysis (ground elevation, ground slope and impermeability)	GIS analysis (building density and point of interest density maps)	-	Fuzzy comprehensive evaluation (risk level map)	Hybrid: Index- based/simulation- based
(Guo et al., 2014)	Flood	R = f(H, E, V, RES)	Variable fuzzy set (VFS) theory set pair theory/GIS spatial analysis (Hazard level map)	Variable fuzzy set (VFS) theory/set pair theory/GIS spatial analysis (Exposure level map)	Variable fuzzy set (VFS) theory/set pair theory/GIS spatial analysis (Vulnerability level map)	Restorability: Variable fuzzy set (VFS) theory/set pair theory/GIS spatial analysis (Restorability level map)	Multiplication of exponentiated indicators (Risk level map)	Index-based
(Hizbaron et al., 2018)	Volcano	-	Pre-existing (volcano hazard maps)		Statistical and spatial analysis (Physical, social, economic, and total vulnerability maps)			Index-based
(Jin et al., 2022)	Lightning	R = f(H, S, F)	GIS spatial analysis (lightning hazard level map)	GIS spatial analysis (frangibility level map)	See note	Sensitivity of the hazard-bearing environment GIS spatial analysis (Sensitivity level map)	Weighted sum of indicators (risk level map)	Index-based

Table 1 Quantitative and semi-quantitative risk assessment methods

Disaster	Factors/indicators	Study: Data source
Flood	Annual	(Sun et al., 2022): National Meteorological Administration [China]
	precipitation	(Guo et al., 2014): China Meteorological Data Sharing Service Network during 1960–2009
		(Luo et al., 2020): Henan Water Resource Bulletin [China]
	Frequency of rainstorm	(Sun et al., 2022): National Meteorological Administration [China]
	Inundation depth	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model
	Inundation area	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model
	Inundation duration	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model
	Extreme	(Guo et al., 2014): China Meteorological Data Sharing Service Network during 1960-2009
	precipitation event frequency	
	Drainage density	(Wu et al., 2015, Wu et al., 2017): Geospatial Data Cloud
	Slope	(Dwivedi et al., 2022): Remote sensing; Previous work
	Distance to river stream	(Dwivedi et al., 2022): Remote sensing; Previous work
	Landslide susceptibility	(Dwivedi et al., 2022): Remote sensing; Previous work
	Elevation	(Dwivedi et al., 2022): Remote sensing; Previous work
Earthquake	Earthquake ground motion intensity	(Brink and Davidson, 2015): Monte Carlo simulation with importance sampling on results of previous works
	Occurrence	(Brink and Davidson, 2015): Monte Carlo simulation with importance sampling on results of previous works
	probability	(Sarica et al., 2020): U.S. Geological Survey Database
	Magnitude of	(Pan et al., 2020): Santai County Statistical Yearbook; Santai County Statistical Bulletin; Random sampling
	Earthquake	to assess the local earthquake losses
		(Sherrill et al., 2022): Deterministic counterfactual scenario
	Peak ground	(Xia et al., 2022): China Earthquake Parameter Zoning Map
	acceleration	(Sarica et al., 2020): U.S. Geological Survey Database
		(Zhang et al., 2021): Earthquake Catalog; Tectonics and Geology data

Table 2 Example Hazard indicators used in the selected studies and corresponding sources of data

Disaster	Factors/indicators	Study: Data source
Flood	Urbanization rate	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
	Population density	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
		(Guo et al., 2014): Statistical Yearbook of Liaoning Province; Chinese macro data mining analysis system
		website
	Building density	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
	Economic density	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
	Ground elevation	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model
	Ground slope	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model
	Impermeability	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model
	Assets density	(Guo et al., 2014): Statistical Yearbook of Liaoning Province; Chinese macro data mining analysis system website
	Economy density	(Guo et al., 2014): Statistical Yearbook of Liaoning Province; Chinese macro data mining analysis system website
	Number/value of exposed properties	(Ming et al., 2022): National property database; Digimap service
Earthquake	Built-up area	(Sarica et al., 2020): Landsat TM images; digital elevation models (DEM); OpenStreetMap (OSM) data; land-use maps; local historical road network maps
	Population	(Xia et al., 2022): World pop project
		(Sherrill et al., 2022): Census data, employment data, proprietary insurance data, expert opinion, and tax
		records (Internal to Hazus model)
	Building inventory	(Zhang et al., 2021): Census data; statistical reports; field investigation
		(Sherrill et al., 2022): Census data, employment data, proprietary insurance data, expert opinion, and tax records (Internal to Hazus model)

Table 3 Exposure indicators used in the selected studies and corresponding sources of data

Disaster	Factors/indicators	Study: Data source		
Flood	Old and young population	(Sun et al., 2022): China Statistical Yearbook (China National Bureau of Statistics)		
	per unit area			
	Proportion of crop – sown	(Sun et al., 2022): China Statistical Yearbook (China National Bureau of Statistics)		
	area			
	Building density	(Cai et al., 2019): Not specified; Internal to DigitalWater Simulation hydrodynamic model		
	Points of interest density	(Cai et al., 2019): Baidu map		
	Proportion of male and	(Guo et al., 2014): Statistical Yearbook of Liaoning Province [China]; Chinese macro data mining		
	female	analysis system website		
	Education level	(Guo et al., 2014): Statistical Yearbook of Liaoning Province [China]; Chinese macro data mining analysis system website		
	Proportion of industrial electricity	(Guo et al., 2014): Statistical Yearbook of Liaoning Province [China]; Chinese macro data mining analysis system website		
	Waterlogged farmland	(Guo et al., 2014): Statistical Yearbook of Liaoning Province [China]; Chinese macro data mining analysis system website		
	Population	(Wu et al., 2015, Wu et al., 2017): Department of Comprehensive Statistics (National Bureau of Statistics [China])		
	GDP	(Wu et al., 2015, Wu et al., 2017): Department of Comprehensive Statistics (National Bureau of Statistics [China])		
	Sown area of farm crops	(Wu et al., 2015, Wu et al., 2017): Department of Comprehensive Statistics (National Bureau of Statistics [China])		
Earthquake	Building fragility	(Brink and Davidson, 2015): Institut Teknologi Bandung; Geoscience Australia; Previous work		
-		(Sherrill et al., 2022): Internal to Hazus model		
	Mortality rate	(Xia et al., 2022): Previous work		

Table 4 Vulnerability indicators used in the selected studies and corresponding sources of data

Risk element	Disaster	Factors/indicators	Study: Data source
Emergency and	Flood	Number of health	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
recovery		technicians (per	
capabilities		10,000 people)	
		Number of beds in	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
		medical institutions	
		(per 10,000 people) Number of medical	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
		and health	
		institutions GDP per capita	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
		Unemployment rate	(Sun et al., 2022): Statistical Yearbook (China National Bureau of Statistics)
Restorability	Flood	Density of road	(Guo et al., 2014): Cold and Arid Regions Science Data Centre at Lanzhou; Database of
		network	Global Change Parameters (Chinese Academy of Sciences)
		The per capita medical person	(Guo et al., 2014): Statistical Yearbook of Liaoning Province; Chinese macro data mining analysis system website
		Per capita GDP	(Guo et al., 2014): Statistical Yearbook of Liaoning Province; Chinese macro data mining analysis system website
Iousehold	Earthquake	Income	(Brink and Davidson, 2015): Indonesian government statistics bureau household survey;
esilience	Larinquake	meome	damage survey data collected after the 2009 Padang earthquake
		Wealth	(Brink and Davidson, 2015): Indonesian government statistics bureau household survey;
			damage survey data collected after the 2009 Padang earthquake
		Individual fragility	(Brink and Davidson, 2015): Indonesian government statistics bureau household survey;
			damage survey data collected after the 2009 Padang earthquake
		Education	(Brink and Davidson, 2015): Indonesian government statistics bureau household survey;
			damage survey data collected after the 2009 Padang earthquake
		Household size	(Brink and Davidson, 2015): Indonesian government statistics bureau household survey;
			damage survey data collected after the 2009 Padang earthquake

Path Forward

- Bottom-up approach

- Based on input and engagement of local and Indigenous community including rich contextual understanding

- Top-down approach

- Based on technical and scientific input and analysis
- How to integrate bottom-up and top-down insights
 - An old age and ubiquitous tension

Questions

 What are the examples of combining local community risk assessment with technical community risk assessment?

 What's your vision for combining the local community risk assessment with technical community risk assessment? Dr Nader Naderpajouh Associate Head of School, Senior Lecturer The University of Sydney Twitter: @nadernnp Email: nader.naderpajouh@sydney.edu.au

