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ABSTRACT  
Flood models rely on accurate topographic data representing the bare earth 
ground surface. In many parts of the world, the only topographic data 
available are the free, satellite-derived global Digital Elevation Models 
(DEMs). However, these have well-known inaccuracies due to limitations 
of the sensors used to generate them (such as a failure to fully penetrate 
vegetation canopies and buildings). We assess five contemporary, 1 arc- 
second (≈30 m) DEMs -- FABDEM, Copernicus DEM, NASADEM, AW3D30 
and SRTM -- using a diverse reference dataset comprised of 65 airborne- 
LiDAR surveys, selected to represent biophysical variations in flood-prone 
areas globally. While vertical accuracy is nuanced, contingent on the 
specific metrics used and the biophysical character of the site being 
assessed, we found that the recently-released FABDEM consistently 
ranked first, improving on the second-place Copernicus DEM by reducing 
large positive errors associated with forests and buildings. Our results 
suggest that land cover is the main factor explaining vertical errors 
(especially forests), steep slopes are associated with wider error spreads 
(although DEMs resampled from higher-resolution products are less 
sensitive), and variable error dependency on terrain aspect is likely a 
function of horizontal geolocation errors (especially problematic for 
AW3D30 and Copernicus DEM).

ARTICLE HISTORY
Received 6 October 2023 
Accepted 17 January 2024  

KEYWORDS  
topography; DTM; accuracy; 
land cover; slope; aspect

1. Introduction

Flood impacts are rising globally (UNDRR 2022), driven primarily by rapid urbanisation and increas
ing settlement in floodplains (Ford et al. 2019; Tellman et al. 2021) and exacerbated by the increasing 
hydro-meteorological variability associated with climate change (Arnell and Gosling 2016). These 
interconnected changes in flood susceptibility and human exposure mean that past flood events 
are less reliable indicators of future impacts. Particularly given this non-stationarity in flood drivers, 
modelling is an important tool in understanding and reducing flood risk, enabling emergency man
agers and city planners to predict and prepare for plausible future conditions and events.

As well as the hydro-meteorological inputs, an integral requirement for such flood models is 
topographic data, ideally representing ‘bare earth’ ground elevations (Sampson et al. 2015; Sanders  
2007). The vertical accuracy of these data is critical since the inundation depths and 
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extents simulated by flood models are highly sensitive to even minor vertical errors, especially in 
low-gradient floodplains (Horritt and Bates 2002).

Currently, the optimal source for such topographic data is high-precision Light Detection and 
Ranging (LiDAR) surveys (Hancock et al. 2021) that can penetrate vegetation canopies (to record 
the ground beneath) and distinguish between different objects (such as vegetation, buildings and 
ground). When LiDAR surveys are processed to filter out vegetation, buildings and other surface 
obstructions, they can yield high-resolution ‘bare earth’ Digital Terrain Models (DTMs) at very 
high accuracies, with vertical Root Mean Square Error (RMSE) typically well below 30 cm 
(Hodgson and Bresnahan 2004). Local and even regional-scale DTMs derived from airborne 
LiDAR surveys are increasingly available in high-income countries but remain extremely rare in 
low-income countries (Sampson et al. 2016), where the risk to lives and livelihoods is often the 
greatest (Rentschler, Salhab, and Jafino 2022).

Where accurate DTMs are not available, regional-scale flood modelling often relies instead on 
freely-available global Digital Elevation Models (DEMs). These DEMs are typically characterised 
by coarse spatial resolutions (1 arc-second at best, roughly 30 m at the equator) and significant ver
tical errors (Hawker, Neal, and Bates 2019). The spaceborne sensors used to generate these global 
DEMs -- either Synthetic Aperture Radar (SAR) or stereoscopic imaging -- penetrate vegetation 
canopies to varying degrees (and buildings not at all), describing a topographic surface that gener
ally sits closer to a Digital Surface Model (DSM) than a DTM (Guth et al. 2021). In addition, the 
global DEMs are subject to a range of potential distortions associated with atmospheric conditions 
at the time of raw data capture, sensor motion/alignment, post-processing routines, and void-filling 
methods (Rodríguez, Morris, and Belz 2006; Takaku et al. 2015).

For the purposes of flood modelling, these vertical errors (defined here as deviations from the 
‘bare earth’ ground surface) can act as artificial sinks or obstructions that detain or divert simulated 
flows (Sampson et al. 2016), resulting in misleading flood maps and exposure assessments. Signifi
cantly, these vertical errors often have a positive bias (i.e. ground elevations are overestimated), 
spuriously diverting flood waters around thick vegetation and built-up areas (Neal et al. 2009). 
This is especially problematic when estimating the coastal inundation extent associated with a 
given (absolute) sea level (Gesch 2018), and represents the largest source of uncertainty when mod
elling coastal inundation under climate change (Kulp and Strauss 2019). Investigating the impact of 
this positive vertical bias in one of the most widely-used DEMs (SRTM), Kulp and Strauss (2019) 
estimated that it would result in global population exposure to coastal flooding being underpre
dicted by a factor of three, indicating the magnitude of the problem.

There have been sustained calls for an improved DEM (in terms of spatial resolution and vertical 
accuracy) to support more reliable flood modelling at regional and global scales, particularly in 
data-scarce environments (Hawker et al. 2018; Sampson et al. 2016; Schumann 2014; Simpson 
et al. 2015). Spaceborne LiDAR holds promise but current mission designs (such as GEDI and ICE
Sat-2) are limited to sparse (spatially discontinuous) sampling -- for instance, GEDI is expected to 
image no more than 4% of the Earth’s surface over its lifetime (Dubayah et al. 2020). This level of 
coverage may be sufficient to inform very coarse DTMs, such as the 5 km-resolution raster 
produced by Vernimmen, Hooijer, and Pronk (2020) for global lowlands. However, this is not 
fit-for-purpose at the spatial resolutions necessary for regional-scale flood modelling, variously 
estimated at 5–50 m (Savage et al. 2016; Winsemius et al. 2019).

Consequently, regional-scale flood models in many parts of the world will continue to rely on the 
DEMs currently available. As such, it is important to understand their relative accuracies and par
ticular strengths/weaknesses. Considering only those with a horizontal resolution of 1 arc-second,  
Table 1 summarises the main DEMs available, derived from either Synthetic Aperture Radar (SAR) 
or stereoscopic imagery. Note the differences in spatial coverage (at higher latitudes) and the sig
nificant variation in acquisition times, in terms of both the year and duration of data collection.

Numerous studies have assessed the accuracy of one or more of these DEMs, reflecting their 
importance across a range of applications beyond flood modelling; including landslide prediction 
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(Ciampalini et al. 2016), ecological modelling (Moudrý et al. 2018), and wetland carbon dynamics 
(Laudon et al. 2011). Until recently, there was a general consensus that the SRTM DEM was most 
accurate (Sampson et al. 2015; Sanders 2007), with AW3D30 sometimes preferred (Courty, Sor
iano-Monzalvo, and Pedrozo-Acuña 2019; Jain et al. 2018) and ASTER consistently found to be 
least accurate (Gesch 2018; Hirt, Filmer, and Featherstone 2010). For a more detailed overview 
of past accuracy assessments, readers are referred to Mesa-Mingorance and Ariza-López (2020) 
and Purinton and Bookhagen (2021).

Since October 2018, four new DEMs have been released to the public, based on either SRTM 
(NASADEM) or the more recent TanDEM-X mission (TanDEM-X 90, Copernicus DEM and FAB
DEM). Although there are limited comparative assessments available, these appear to be significant 
improvements over the older options (Guth and Geoffroy 2021; Marsh, Harder, and Pomeroy  
2023), including for flood modelling applications (Garrote 2022). Significantly, the most recent 
DEM (FABDEM) used machine learning (random forest models) to reduce vertical errors (Hawker 
et al. 2022), with more advanced deep learning techniques based on multi-modal data (Hong et al.  
2021, 2023) showing potential to provide further improvements in the future, as indicated by pre
liminary studies (Meadows and Wilson 2021; Nguyen et al. 2022).

Many of the past DEM accuracy assessments have also investigated the factors influencing ver
tical accuracy, providing insights into DEM suitability (e.g. for different terrains or land cover 
classes) and vertical error correction. The most significant explanatory factors consistently ident
ified are land cover and slope, with aspect sometimes found to be important too (Kramm and 
Hoffmeister 2021; Mesa-Mingorance and Ariza-López 2020). In general, vertical errors are largest 
for land cover classes representing elevated surfaces at least partially opaque to spaceborne sensors 
(such as forest canopies and buildings) and for steep slopes (Gdulová, Marešová, and Moudrý 2020; 
Hawker, Neal, and Bates 2019).

The purpose of this study is to provide a comprehensive accuracy assessment of contemporary 
and freely-available DEMs, using a large and diverse collection of study sites representative of the 
land cover and terrain conditions found in flood-prone areas globally. Our assessment is based on 
well-established methodologies and accuracy metrics (allowing us to situate our results in the con
text of past studies); its importance lies instead in assessing recently-released DEMs (especially 
FABDEM) in flood-prone environments and in using a globally distributed reference dataset to 
enable more general, robust conclusions. As well as evaluating the overall accuracy of each 
DEM, we explore how accuracy varies by land cover and terrain (slope and aspect). These outcomes 
will support flood modellers in selecting the most appropriate DEM for a given region, based on its 
land cover and terrain, and understanding its limitations (likely error profile).

2. Material and methods

2.1. Reference data

To assess each DEM’s vertical accuracy, reference elevation data are needed. These reference data 
should define the bare ground surface with an accuracy at least three times greater than that of the 
dataset being assessed (Maune 2007). Reported Root Mean Square Error (RMSE) values for the 

Table 1. Overview of freely-available, 1 arc-second global DEM products.

Global DEM Spatial coverage Data acquisition Primary data source

SRTM (v3) 56◦S–60◦N 2000 (11 days) C-band radar
ASTER (v3) 83◦S–83◦N 2000–2013 Stereo NIR imagery
AW3D30 (v3.2) 82◦S–82◦N 2006–2011 Stereo pan imagery
NASADEM (v1) 56◦S–61◦N 2000 (11 days) Reprocessed C-band radar
Copernicus DEM (v2022) Global 2011–2015 Reprocessed X-band radar
FABDEM (v1.2) Global 2011–2015 Copernicus DEM
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DEMs considered here typically range from 3–15 m (Gesch 2018; Uuemaa et al. 2020), implying 
that reference elevation data should have RMSE values below 1 m.

Based on its ability to penetrate vegetation canopies and filter out non-ground returns, airborne 
LiDAR captures the true ground surface with very high accuracy, reporting vertical RMSE values 
well within 0.3 m (Gesch 2018; Hodgson and Bresnahan 2004). For this study, we collated 65 
DTMs derived from airborne LiDAR surveys, spread across 18 countries and covering more 
than 14,000 km2. This provided more than 18.2 million grid cells for each DEM, which we believe 
to be the largest and most diverse reference dataset processed for this purpose. A detailed summary 
of these DTM datasets is provided in Table S1 (Supplementary Material).

2.2. Site selection

Study sites were selected to collate a representative sample of the typical biophysical conditions 
found in flood-prone areas globally, constrained by the limited availability of high-resolution 
(≤ 5 m) airborne LiDAR DTMs. We used the following factors to stratify our sample: (1) land 
cover, (2) climate zone, (3) degree of urbanisation, and (4) slope. The specific land cover dataset 
used is described in Section 2.6.2, climate zones are the present-day Köppen–Geiger zones pub
lished by Beck et al. (2018), degree of urbanisation is the 2020 raster in the Global Human Settle
ment Layer Data Package 2022 (Schiavina, Melchiorri, and Pesaresi 2022), and slope ranges were 
calculated using the MERIT DEM (Yamazaki et al. 2017).

As an indicative delineation of flood-prone areas, we merged the GFPLAIN250m global 
floodplain raster (Nardi et al. 2019) with the Low Elevation Coastal Zone (LECZ) raster pub
lished by MacManus et al. (2021), representative of fluvial and coastal flood susceptibility 
respectively. Reference DTMs located directly within these flood-prone areas were preferred 
wherever possible. However, we also included DTMs in adjacent areas, targeting a representative 
sample of the four factors listed above, with reference to the distributions estimated for each 
factor within flood-prone areas globally. These global distributions within flood-prone areas 
were calculated using Google Earth Engine (Gorelick et al. 2017), excluding permanent water 
bodies from the analysis using the Surface Water Occurrence layer published by Pekel et al. 
(2016). A threshold of 90% was used to filter out ocean or inland lake cells, while retaining 
occasionally-flooded plains and riverbanks (determined through visual assessments and a sensi
tivity analysis).

Effectively, this guided our site selection to minimise coverage in areas highly unlikely to be 
affected by floods (e.g. steep mountainsides) and to collate a diverse evaluation database represent
ing the typical conditions in flood-prone areas globally. The locations of the selected sites are shown 
in Figure 1, along with the resulting areal coverage of the four selection factors (bars) and their cor
responding distributions in flood-prone areas globally (dotted lines).

2.3. Global DEMs

Considering all publicly-available DEMs, we limit our evaluation to the 1 arc-second products, 
given the well known impact of spatial resolution on DEM derivatives (Vaze, Teng, and Spencer  
2010) and subsequent complications in comparing accuracies at different resolutions. Of the 
DEMs listed in Table 1, only ASTER is excluded (in the interests of brevity and clarity in visual com
parisons), given that past studies have so consistently found it to be inferior to other options (Hirt, 
Filmer, and Featherstone 2010; Uuemaa et al. 2020).

All considered DEMs are summarised below, grouped by the satellite mission during which their 
primary raw data were collected (either synthetic aperture radar or panchromatic stereoscopic ima
gery). Within each group, the different DEM products available represent alternative processing 
workflows, with more recent options taking advantage of algorithms and/or supplementary data 
sources not available to previous iterations.
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2.3.1. Shuttle Radar Topography Mission (SRTM)
The Shuttle Radar Topography Mission (SRTM) was flown over 11 days in February 2000, collect
ing C-band synthetic aperture radar (SAR) over land areas between 60◦N and 56◦S, representing 
around 80% of the total landmass (Farr et al. 2007). We use version 3 of the 1 arc-second SRTM 
DEM, released in 2015.

Released in February 2020, the 1 arc-second NASADEM (version 1) is a complete re-processing 
of the SRTM radar data, taking advantage of improved SAR methods and newly-available elevation 
data (especially ICESat altimetry and version 3 of the ASTER DEM) to fill voids (Crippen et al.  
2016).

2.3.2. Advanced Land Observing Satellite (ALOS)
From 2006–2011, the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) sen
sor on board the ALOS satellite (Japan Aerospace Exploration Agency) captured stereoscopic 

Figure 1. Summary of study sites selected, showing (a) location (with reference to flood-prone areas globally) and comparing 
their areal distribution (bars) with that of flood-prone areas (dotted lines), for (b) land cover, (c) climate zone, (d) slope class, and 
(e) degree of urbanisation.
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imagery with a resolution of 2.5 m (Takaku et al. 2016). This was used to produce a very high-res
olution (0.15 arc-seconds) commercial DEM, ALOS World 3D (AW3D), later resampled to the 
freely-available ALOS World 3D 30m (AW3D30) DEM, with a resolution of 1 arc-second (Tadono 
et al. 2016). We use the latest version available at the time of writing for each tile of interest (version 
3.2 for one tile and 3.1 elsewhere).

2.3.3. TerraSAR-X add-on for Digital Elevation Measurement (TanDEM-X)
The TanDEM-X mission is a public-private partnership between the German Aerospace Centre 
(DLR) and Airbus Defence and Space, collecting X-band SAR data over the entire globe between 
December 2010 and January 2015. This initially resulted in two 0.4 arc-second DEMs - a commer
cial product (WorldDEM) developed by Airbus Defence and Space and the TanDEM-X DEM, 
available on request to researchers but not the general public (Rizzoli et al. 2017). However, the 
European Space Agency (ESA) have since released the Copernicus DEM, a resampling of the 
higher-resolution WorldDEM product which may benefit from the manual corrections applied 
there, especially the flattening of water bodies (Fahrland et al. 2022). Two resolutions are pub
licly-available: GLO-90 (3 arc-seconds) and GLO-30 (1 arc-second).

We evaluate here the 1 arc-second version (GLO-30, version v2022), which comes in two for
mats: DGED and DTED. These differ in precision (floating-point and integer, respectively) and 
longitudinal spatial resolution at high latitudes (above 50◦). To test the assumption that the higher 
precision offered by DGED translates into higher vertical accuracy, both formats are included in 
summary tables, with figures generally showing only the DGED format (for visual clarity).

The most recent addition to this group of publicly-available 1 arc-second DEMs is the Forest 
And Buildings Removed DEM (FABDEM), for which we assess version 1.2, released in January 
2023 (Neal and Hawker 2023). This is based on the Copernicus DEM (GLO-30 DGED) but uses 
random forest models to correct the vertical errors associated with forests and buildings, with a 
reported halving of absolute errors in test sites (Hawker et al. 2022). The limited independent vali
dations currently available report similarly impressive accuracy metrics (Marsh, Harder, and 
Pomeroy 2023), suggesting great potential for future flood modelling applications in data-scarce 
areas, noting that a licensing fee is required for any commercial applications.

2.4. Pre-processing

To enable direct comparisons, all datasets were pre-processed to achieve a common coordinate 
reference system and vertical datum. All of the DEMs use WGS84 for their horizontal coordinates, 
while elevations are provided with reference to either the EGM96 (SRTM, NASADEM, AW3D30) 
or EGM2008 (Copernicus DEM, FABDEM) geoid model. We selected the EGM2008 geoid for our 
evaluation, based on its superior accuracy to EGM96 (Pavlis et al. 2012). For any DEMs not orig
inally using EGM2008, vertical datum shifts were applied using the dem_geoid function in the 
NASA Ames Stereo-Pipeline toolbox, version 3.1 (Beyer, Alexandrov, and McMichael 2018).

While all DEMs considered here are nominally 1 arc-second in resolution, the Copernicus DEMs 
switch to wider longitudinal grid spacing above latitudes of 50◦ (1.5 and 2.0 arc-seconds for DGED 
and DTED, respectively, with further changes at higher latitudes). To maintain a consistent resol
ution for our analysis, we resampled the Copernicus DEMs to 1 arc-second (using the bilinear 
method) for the three sites above 50◦ latitude.

The higher-resolution reference DTMs were then resampled (average method) to match the grid 
resolution and alignment of each DEM in turn, using GDAL command-line utilities, version 3.4.2 
(GDAL/OGR contributors 2022) for the horizontal transformation (to WGS84) and the NASA 
Ames Stereo-Pipeline for vertical datum shifts (to EGM2008). This approach allowed the direct 
evaluation of each DEM in its native grid alignment, with the only modifications being either ver
tical datum shifts (applied to SRTM, NASADEM and AW3D30) or resampling to 1 arc-second res
olution (applied to the Copernicus DEMs for the three sites above 50◦).
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Before beginning our analysis, we applied two manual data checks and edits. The first was to 
manually exclude grid cells for which there were obvious topographical changes during the overall 
raw data capture period (2000–2015), using multi-temporal Google Earth imagery to identify these 
(primarily quarries and coastal cliffs), following the approach taken by Hawker, Neal, and Bates 
(2019). Secondly, where buildings were identified in the reference DTMs (usually large warehouses 
presumably missed by the LiDAR processing algorithms), these were removed and then filled using 
Inverse Distance Weighting (IDW) interpolation from surrounding ground cells.

2.5. Error metrics

We define the vertical error in each DEM as its deviation from the bare ground surface described by 
the reference DTMs. This is evaluated on a cell-by-cell basis for all study sites, using the resampled 
version of each DTM (matching that particular DEM’s grid alignment):

Dhi = hi,DEM − hi,ref (1) 

where the error term (Dhi) for each grid cell i is the difference between the elevation defined for that 
cell by the DEM (hi,DEM) and the resampled reference DTM (hi,ref ).

As well as visualising the statistical distributions of error values using histograms, we summarise 
them using a range of error metrics recommended in the literature. This enables easier comparisons 
between DEMs and with past studies, keeping in mind that all single-value metrics are simplifica
tions and can be misleading if used in isolation (Hawker, Neal, and Bates 2019). Considering past 
DEM accuracy studies, the most commonly-used metrics include the Mean Error (ME), Mean 
Absolute Error (MAE), Standard Deviation (STD), and Root Mean Square Error (RMSE), as 
defined below.

ME =
1
n

􏽘n

i=1
Dhi (2) 

MAE =
1
n

􏽘n

i=1
|Dhi| (3) 

STD =

�����������������������
1

n − 1

􏽘n

i=1
(Dhi − ME

􏽳

)2 (4) 

RMSE =

�����������
1
n

􏽘n

i=1
Dh2

i

􏽳

(5) 

However, these metrics all assume that errors follow a Gaussian (normal) distribution and have 
no significant outliers, even though this is rarely the case for DEMs (Gesch 2018). For alternative 
error metrics more robust to non-Gaussian distributions and the presence of outliers, we include 
three recommended by Höhle and Höhle (2009): median error, Normalised Median Absolute Devi
ation (NMAD), and absolute deviation at the 95% percentile (LE95).

NMAD = 1.4826 ·median(|Dhi − mDhi |) (6) 

LE95 = Q̂|Dhi|(0.95) (7) 

where mDhi denotes the median error value and Q̂|Dhi| is a percentile of the absolute error values. The 
NMAD describes the spread of a distribution, similarly to STD but without that metric’s sensitivity 
to outliers. In the case that errors do follow a Gaussian distribution (and sufficient samples are avail
able), the NMAD will be identical to the STD (Höhle and Höhle 2009).
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All metric values are provided in summary tables, with four shown in the figures to highlight 
different properties of the error distributions: median error (centre), NMAD (spread), RMSE 
(for comparison with past studies) and LE95 (tail errors).

2.6. Vertical accuracy assessment

Before assessing vertical accuracy, we applied a water mask to filter out DEM cells identified as 
ocean, as these are not relevant to terrestrial flood modelling and often subject to significant dis
tortions, particularly for SAR-based DEMs (Wessel et al. 2018). For all DEMs, we used the Water 
Body Mask (WBM) rasters provided with the Copernicus DEM (GLO-30 DGED) (Fahrland et al.  
2022).

2.6.1. Overall vertical accuracy
We assessed the overall accuracy of each DEM by pooling all available error values (across all study 
sites, with no filters applied), comparing their distributions (using histograms), and calculating the 
error metrics described in Section 2.5.

2.6.2. Vertical accuracy by land cover
To investigate how vertical error varies with land cover, we label each DEM grid cell with a land 
cover class using the European Space Agency (ESA) WorldCover 10m 2020 v100 product (Zanaga 
et al. 2021). This was selected for its high spatial resolution, a relatively small Minimum Mapping 
Unit (MMU) of 100 m2 (meaning each grid cell is labelled based on its own land cover, rather than 
evaluated in aggregate with neighbouring grid cells) and an independent validation confirming 
comparable accuracy with coarser-resolution options (Venter et al. 2022).

Of the 11 land cover classes available, two were excluded (‘Snow & ice’ and ‘Moss & lichen’), 
given negligible coverage within our study sites or flood-prone areas globally. The remaining 
classes are summarised in Table 2, along with the classifications used for the other analysis 
factors.

To focus on the significance of land cover, we first filtered out grid cells on steep slopes (for 
which large errors are expected), in an attempt to isolate the influence of land cover from that of 
slope. A threshold of 15◦ was applied for this, the same value used by Uuemaa et al. (2020) for 
this purpose, which excluded 7.7% of our full error dataset.

2.6.3. Vertical accuracy by slope
In addition to land cover, slope is well known to have a significant influence on DEM error (Haw
ker, Neal, and Bates 2019). We derive rasters of slope (and aspect, covered in the following section) 
from the resampled reference DTMs, using the geodetic formulae of Florinsky (2016) as 
implemented in the WhiteboxTools application, version 2.1 (Lindsay 2016). This avoids the 
need to reproject the DTMs first (e.g. to UTM), which can significantly alter their characteristics 
(Guth and Kane 2021).

To simplify the presentation of results, we reclassified slope into six unequal classes, allowing 
more detail for lower slopes (Table 2), and assessed the distribution of vertical errors in each 
class using histograms and error metrics.

Table 2. Categorical classifications used for the primary analysis factors.

Factor Classes

Land cover Tree cover, Shrubland, Grassland, Cropland, Built-up, Bare/sparse vegetation, Water bodies,  
Herbaceous wetland, Mangroves

Slope 0–1◦ , 1–2.5◦ , 2.5–5◦ , 5–10◦ , 10–15◦ , 15–20◦ , 20–25◦ , >25◦

Aspect N, NE, E, SE, S, SW, W, NW
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2.6.4. Vertical accuracy by aspect
Aspect, the direction that a terrain slope faces, may also be associated with DEM errors, especially 
on steep slopes (Gdulová, Marešová, and Moudrý 2020). Most past studies assessing this have 
found at least a weak correlation (Szabó, Singh, and Szabó 2015; Uuemaa et al. 2020) but 
there is no clear consensus on the pattern expected for each DEM (Z. Liu et al. 2020). This 
may be due to the limited number of sites evaluated in each study and the stronger influence 
of varying land cover and slope distributions in each aspect direction. Where a clear pattern is 
observed, this is generally attributed to satellite orbit and sensor orientation, with foreslopes 
(slopes facing the sensor) expected to be more accurate than backslopes (Shortridge and Messina  
2011; Toutin 2002).

Error dependency on aspect will be most apparent on steep slopes (Gdulová, Marešová, and 
Moudrý 2020), so we filtered out DEM cells with slope < 10◦, the same threshold used by Szabó, 
Singh, and Szabó (2015) for this purpose. Reclassifying aspect into eight directions around the com
pass (Table 2), we found that distributions of land cover and slope within each of these aspect 
classes were quite different. Since land cover and slope are well known to significantly affect 
DEM errors, we addressed this class imbalance using a stratified sampling approach (with strata 
being land cover-slope class pairs). For each aspect class, we took repeated random samples, 
weighted so as to target the same overall distributions found in the full high-slope dataset. This 
was intended to correct for variations in error due to differing land cover and/or slope distributions 
in each direction, to see if any clear patterns remained that might be attributed to aspect. Further 
details are provided in Text S1 (Supplementary Material).

Some authors have suggested that any variation of vertical error with aspect is likely a result of 
horizontal geolocation errors (Nuth and Kääb 2011), rather than differing vegetation or terrain con
ditions (Z. Liu et al. 2020). Where that is the case, the relationship between aspect and vertical error 
(normalised by the tangent of the slope) would be expected to follow a cosine function, the par
ameters of which provide the direction and magnitude of the geolocation correction required 
(Nuth and Kääb 2011). Importantly, this relationship may be masked for DEM tiles derived by mer
ging multiple scenes, each of which may have its own geolocation error (Guan et al. 2020), which 
could explain why error dependency on aspect is not always clear.

We assess this separately for each site, using only steep slopes (≥ 10◦) and excluding ‘Tree cover’ 
cells (given highly asymmetric error distributions that were found to bias results). For sites with a 
sufficient sample (at least 2,000 cells, spread across different aspect directions), we fit a cosine func
tion to predict the slope-normalised error as a function of aspect, using the curve_fit function in 
the scipy Python package (version 1.9.3). Goodness-of-fit is evaluated by assessing each plot visu
ally (see Figure S1, Supplementary Material, for an example) and testing whether the predicted 
slope-normalised error would enable a superior error correction than simply subtracting the 
mean slope-normalised error calculated for that site.

3. Results

3.1. Overall vertical accuracy

Distributions of the vertical errors calculated for each DEM (across all study sites) are visualised in  
Figure 2, showing an overview (a) and then focusing on the centre (b) and the left (c) and right (d) 
tails. Above the overview plot (a), our four key error metrics are visualised with reference to the 
same x-axis, noting that only one of the GLO-30 formats is shown (indistinguishable at this 
scale). As expected by Höhle and Höhle (2009), these DEM errors do not follow a Gaussian distri
bution (see Figure S2).

Table 3 presents overall error metric values, highlighting in each row the best (blue) and worst 
(red) performing DEMs for that metric. FABDEM consistently ranked first across all metrics, while 
AW3D30 was last for all but MAE and NMAD (for which SRTM errors were even higher).
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3.2. Vertical accuracy by land cover

Figure 3 shows histograms (left column) and error metrics (right column) for each DEM within 
each of the land cover classes considered (rows), limiting the analysis to slopes < 15◦ (to exclude 
the impact of very steep slopes on vertical errors). Metric values are given in Table S2.

Figure 2. Density histograms of vertical error for each DEM: (a) overview plot, with selected metrics shown at the top and labels 
indicating the fraction of each distribution visible, (b) centre of the distribution, (c) left tail and (d) right tail.

Table 3. Overall error metrics for each DEM, highlighting the best (blue) and worst (red) DEM for each metric.

Metric SRTM NASADEM AW3D30 GLO-30 (DGED) GLO-30 (DTED) FABDEM

ME (m) 2.42 1.51 3.04 2.00 2.00 0.33
MAE (m) 3.72 3.10 3.66 2.53 2.56 1.43
STD (m) 4.81 4.51 4.88 4.46 4.47 2.60
RMSE (m) 5.38 4.76 5.75 4.89 4.89 2.62
Median (m) 1.65 0.66 1.85 0.21 0.28 −0.04
NMAD (m) 3.65 2.90 2.82 1.27 1.38 1.04
LE90 (m) 8.47 7.38 8.89 7.71 7.72 3.53
LE95 (m) 11.19 10.13 13.15 12.00 11.98 5.42
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3.3. Vertical accuracy by slope

Figure 4 visualises DEM errors (using histograms, with error metrics along the top) for each of the 
eight slope classes considered (a-h), noting that these provide more detail at the low-slope end. Stee
per slopes are clearly associated with wider error distributions (a mix of positive and negative error 
values) and increasingly positive median errors. Metric values are provided in Table S3.

To assess and compare the sensitivity of each metric to slope (across DEMs), Figure 5 shows the 
change in error metric values as slope increases. For this analysis, each metric was evaluated over 
equal-interval slope ranges (2.5◦) to see more clearly the structural form of these relationships (lin
ear or otherwise).

Figure 3. Density histograms (left column) and error metrics (right column) describing each DEM’s vertical error within different 
land cover classes (rows), with labels indicating the number of grid cells available after filtering out steep slopes (≥15◦).
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3.4. Vertical accuracy by aspect

Based on the probabilistic stratified sampling approach outlined in Section 2.6.4, Figure 6 shows 
the mean error metrics calculated in each aspect direction across all sites, split by hemisphere to 
highlight the contrasting patterns observed for AW3D30. These results suggest that vertical errors 
do vary by aspect, although the range of this variation is significantly lower than for land cover or 
slope.

To explore whether this variation in vertical error by aspect might be due to horizontal geoloca
tion errors, Figure 7 summarises for each DEM the distribution of geolocation corrections esti
mated (for sites where this was possible), following the approach outlined in Section 2.6.4. 
Radial histograms (a-e) show the number of corrections estimated in each direction for each 
DEM (colours indicate correction magnitude) and the strip plot (f) shows distributions of correc
tion magnitudes. (Note that a map showing the spatial distribution of these estimated geolocation 
corrections is provided in Figure S3.)

Figure 4. Density histograms and selected error metrics for all DEMs within each slope class (a-h), with labels indicating the 
sample size available within each slope class (for each DEM).
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Figure 5. Relationship between terrain slope and DEM error metric, evaluated over equal interval (2.5◦) slope ranges between 0– 
47.5◦ .

Figure 6. Mean error metrics by aspect direction, for sites in the northern (left column) and southern (right column) hemispheres.
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4. Discussion

4.1. Overall vertical accuracy

Considering the overall error distributions (Figure 2), the most striking result is the difference 
between the DEMs derived from older satellite missions (SRTM, AW3D30, NASADEM) and the 
more recent products based on the TanDEM-X mission (GLO-30 DGED, GLO-30 DTED and FAB
DEM). The latter group show much narrower distributions (e.g. the NMAD for GLO-30 DGED is 
1.27 m, compared with 3.65 m for SRTM) and are centred more closely on zero error (e.g. median 
error is 0.21 m for GLO-30 DGED, compared with 1.65 m for SRTM).

As expected, the DGED format (floating-point precision) of GLO-30 seems superior to the 
DTED format (integer precision), especially in the centre of the distributions (where DGED is 
slightly narrower), although distribution tails are very similar. In both formats, the GLO-30 
DEMs have a relatively high proportion of large positive errors (see Figure 2(d)), most of which 
are found in densely-vegetated areas. This is reflected in high LE95 values, underscoring the limit
ations of short-wavelength X-band radar in penetrating vegetation canopies to record the ground 
surface (Schlund et al. 2019).

While some past studies preferred AW3D30 over SRTM (Jain et al. 2018; Uuemaa et al. 2020), we 
find that AW3D30 has the largest errors (judged by median error, RMSE and LE95) of all DEMs 
considered here, albeit by a small margin. This slight underperformance compared with the 
other DEMs from older missions (SRTM and NASADEM) seems to be due primarily to a higher 
fraction of large positive errors. Considering errors ≥ 15 m, we find they make up 3.6% of 
AW3D30 grid cells across our study sites, compared with only 2.0% and 1.5% for SRTM and NASA
DEM, respectively.

Two of the DEMs assessed here might be considered ‘improved’ versions of another, albeit in 
different ways: NASADEM is based on a re-processing of the SRTM radar data (Crippen et al.  
2016), while FABDEM used machine learning to address vertical errors in GLO-30 DGED (Hawker 
et al. 2022). In both cases, the newer DEMs do appear superior to their sources, based on error 
metrics and a visual comparison of their error distributions. NASADEM shows a more symmetrical 

Figure 7. Distribution of estimated geolocation corrections to be applied, with radial histograms (a-e) summarising both direc
tion and magnitude for each DEM, and a strip plot (f) showing the distributions of absolute magnitudes.
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distribution centred closer to zero, while FABDEM has significantly reduced the large positive 
errors found in GLO-30. In both cases however (especially for FABDEM), this is at the expense 
of increasing the distribution of large negative errors, which will have implications when these 
DEMs are used for flood modelling. A detailed comparison is shown in Figure S4.

Given the scarcity of open-access LiDAR-derived DTMs, some used as reference data here were 
also used by Hawker et al. (2022) to train the FABDEM correction model, biasing evaluations of its 
performance. For a more rigorous assessment, we divide our reference sites into those seen (13) 
versus unseen (52) during FABDEM training and then evaluate the change in error metric values 
(from GLO-30 DGED to FABDEM) for each set. As shown in Figure S5, the percentage change in 
metric values for the unseen sites (b) is comparable -- and in some cases, superior -- to the changes 
for the sites seen during training (a). This suggests that the FABDEM correction model generalises 
well to new application areas.

4.2. Vertical accuracy by land cover

Land cover has a significant effect on vertical errors, as evident from the wide variation in error 
histograms (by land cover class) shown in Figure 3. This is likely a function of the height of elevated 
surfaces (e.g. tree canopies and building rooftops), the density of vegetation or built infrastructure, 
and the differing penetration capability of each satellite sensor. For example, X-band radar (GLO- 
30) uses a shorter wavelength than C-band radar (SRTM, NASADEM), meaning it penetrates less 
deeply into vegetation canopies (Schlund et al. 2019), resulting in higher vertical errors in thickly- 
vegetated areas (Wessel et al. 2018).

The land cover classes evaluated in this study are ‘Tree cover’, ‘Shrubland’, ‘Grassland’, ‘Crop
land’, ‘Built-up’, ‘Bare/sparse vegetation’, ‘Water bodies’, ‘Herbaceous wetland’ and ‘Mangroves’. 
Of these, ‘Tree cover’ is clearly the most significant driver of DEM error, with the highest error 
metrics out of all land cover classes, across all DEMs (with the single exception of FABDEM’s 
median error, for which the ‘Mangroves’ class is slightly higher). Errors under ‘Tree cover’ tend 
to have relatively wide distributions, with a significant positive bias and long right tails.

Next in significance is ‘Mangroves’, another type of tree cover, with the second highest RMSE 
and LE95 values across all DEMs. Error distributions here highlight the significance of numerical 
precision. Given that reference ground elevations in this land cover class are clustered closely 
around zero (being coastal environments), the impact of rounding for the integer-precision 
DEMs (SRTM, NASADEM, AW3D30, with GLO-30 DTED not shown) is visible as multimodal 
peaks around each metre value, rather than a continuous distribution (as seen for the floating- 
point precision DEMs: GLO-30 DGED and FABDEM).

Errors within ‘Built-up’ areas are generally high, although this varies significantly by DEM, 
with FABDEM least impacted (LE95 2.61 m) and AW3D30 most (LE95 7.42 m). ‘Water bodies’ 
show similar median error and RMSE values (with even higher LE95 values), although these dis
tributions are much noisier than for other land cover classes. This is likely due to the temporal 
variation in river/lake water levels (Li et al. 2022) and low signal coherence for the SAR-based 
DEMs (Wendleder et al. 2013), potentially exacerbated by the relatively small sample sizes 
available for this class.

Past studies have found that water bodies were especially problematic for the TanDEM-X DEMs 
(Kramm and Hoffmeister 2021). However, GLO-30 (based on the same raw data) does not appear 
to suffer from these distortions, with the lowest RMSE and LE95 values of all DEMs. This is likely 
due to the hydro-enforcement (flattening of water bodies and ensuring elevations along rivers con
sistently slope downstream) performed for the commercial WorldDEM product, from which GLO- 
30 is derived (Fahrland et al. 2022).

Error metrics for ‘Grassland’ and ‘Cropland’ are similar, with the latter slightly lower across all 
DEMs, perhaps due to the relative homogeneity of agricultural land, whereas natural grasslands will 
contain the occasional tree or shrub, biasing DEM elevations higher.
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Aside from the multimodal error distribution in ‘Mangroves’ (discussed above), distributions 
within the other land cover classes are generally unimodal, with the exception of ‘Shrubland’ and 
‘Herbaceous wetland’, for which GLO-30 DGED and FABDEM are distinctly bimodal. Hawker, 
Neal, and Bates (2019) noticed a similar pattern for the 3 arc-second TanDEM-X (same raw data 
source) within short vegetation zones. This likely reflects the diverse vegetation types grouped 
within each of the high-level classifications used in global land cover maps.

FABDEM’s focus on improving vertical errors due to forests and buildings is clear, showing 
significant changes in distribution (compared with GLO-30 DGED) within the ‘Tree cover’, 
‘Mangroves’ and ‘Built-up’ classes especially. Error distributions in other classes remain similar.

4.3. Vertical accuracy by slope

Steeper slopes are clearly associated with higher vertical errors (Figure 4), showing wider error dis
tributions and increasingly positive median errors. However, assessing the direct impact of slope is 
complicated given that ‘Tree cover’ fraction increases consistently with slope, making it hard to dis
entangle the impact of forest canopies from that of the slope in itself. We speculate that the right
ward shift in median error is likely due to increasing forest cover, while the wider error spreads may 
be directly attributed to slope. This is likely due to geometric distortions in satellite imagery inputs 
(which make it harder to match stereo images) and/or horizontal offset errors (which have only 
minor impacts in flat areas but are much more significant on steep slopes), as suggested by Li 
et al. (2022).

This strong association between slope and vertical errors has been well documented before; more 
interesting is to compare the rates at which error metrics change with slope (Figure 5). For most 
DEMs, we found a fairly linear relationship between slope and error metric until 30–35◦, after 
which the rate of change increases (except for median errors, which plateau). AW3D30 differs in 
that the relationship between slope and error metric continues to be roughly linear even for the stee
pest slopes evaluated here, as found by Guan et al. (2020). This is especially noteworthy for the LE95 
metric, which increases dramatically for other DEMs above slopes of 40◦ (particularly for FAB
DEM) but continues on the same linear trend for AW3D30.

Focusing on lower slopes (of most relevance to floodplain modelling), FABDEM shows not only 
the lowest vertical errors but also the least sensitivity to changes in slope (i.e. the flattest lines in 
Figure 5). Up to 30–35◦, median errors remain very close to zero and very large errors (as indicated 
by LE95) increase at a slower rate than for other DEMs (with the caveat that they increase dramati
cally for slopes above 35◦).

4.4. Vertical accuracy by aspect

Looking at the variation in error metric values across the eight aspect direction classes considered 
(Figure 6), we found evidence of a small but consistent pattern for each DEM. For large error 
metrics (RMSE and LE95), SRTM and NASADEM show higher errors on south-facing slopes 
and lower errors on north-facing slopes, regardless of hemisphere. This is similar to the pattern 
found by Uuemaa et al. (2020) but differs from most other past studies, which have generally 
found higher SRTM errors on slopes facing north (Carrera-Hernández 2021; Szabó, Singh, and 
Szabó 2015) or north-west (Hawker, Neal, and Bates 2019; Shortridge and Messina 2011). This 
divergence may be a function of sample size, with most studies evaluating a relatively small collec
tion of sites (usually in the same geographical region) or reflect biases present in earlier SRTM 
versions.

Past studies assessing AW3D30 have generally found little to no error variation by aspect (Z. Liu 
et al. 2020; Uuemaa et al. 2020), but our results suggest a relatively strong dependency if study sites 
in each hemisphere are assessed separately. For sites in the northern hemisphere, errors are highest 
to the east or south-east, while in the southern hemisphere, slopes facing north tend to have the 
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highest errors. We note that this contrasting pattern is not observed for the SAR-based DEMs, and 
speculate that it may relate to the photogrammetry matching process and solar illumination, per
haps in terms of differing horizontal offset errors by solar incidence angle.

We found relatively low variation in GLO-30 (and, by extension, FABDEM) error with aspect, 
except that large error metrics (RMSE and LE95) are consistently lowest on north/north-west facing 
slopes. There is also weak evidence for slightly higher errors on east-facing slopes in the northern 
hemisphere and west-facing slopes in the southern hemisphere, which would correspond to back
slopes during the initial TanDEM-X data collection period (Rizzoli et al. 2017). This is seen most 
clearly for FABDEM, perhaps because errors relating to land cover have been so effectively reduced, 
leaving terrain-based errors more exposed. While the literature is currently limited on this, we note 
that our results are consistent with the higher errors on east-facing slopes reported by Marsh, 
Harder, and Pomeroy (2023) for a northern hemisphere site.

When we assessed the possibility that vertical error dependency on aspect was primarily a func
tion of geolocation errors (Figure 7), we found clearest evidence of this for AW3D30 and GLO-30. 
AW3D30 had both the highest number of sites where an offset was evident (27) and the highest 
mean offset magnitude (5.6 m). Required corrections were predominantly to the south-east or 
east, except for sites in New Zealand and Melanesia, where a northward shift was indicated (see 
Figure S3). These make up most of the steep-slope southern hemisphere sites evaluated in this 
study, so it is unclear whether the differing error profiles seen for AW3D30 in Figure 6 actually 
relate to hemisphere or a more specific, regional issue. As for GLO-30, the geolocation corrections 
estimated were more consistent in direction (mostly to the south or south-west) but smaller than for 
other DEMs (mean magnitude 3.1 m).

While a full investigation of the impact of applying these geolocation corrections to each DEM 
for each relevant site is beyond the scope of this study, we did so for one site in the Canary 
Islands (a suitable test site, given mostly steep slopes and minimal tree cover). This resulted in 
significant improvements to error metrics (see Figure S6), particularly for steep slopes (≥10◦), 
where vertical errors showed lower variation (NMAD reduced by 35% for AW3D30 and 41% 
for GLO-30) and lower large error metrics (LE95 reduced by 13% for AW3D30 and 33% for 
GLO-30). This preliminary result suggests that geolocation errors may be a significant source 
of vertical errors for some DEMs, noting that this will vary dependent on the individual scenes 
merged for each DEM tile.

4.5. Which is more significant -- land cover or slope?

Past studies have consistently focused on land cover and slope as the two main factors explaining 
vertical DEM errors (Magruder, Neuenschwander, and Klotz 2021). However, there is no consen
sus as to which is most important, which would help DEM users identify the most error-prone 
areas in a given study site. Some studies found that land cover is the dominant factor (Li et al.  
2022), while others suggest it is slope (Carrera-Hernández 2021; K. Liu et al. 2019; Uuemaa et al.  
2020). This divergence may be due to the limited sites considered in each study, corresponding to 
small subsets of the full range of land cover and slope combinations possible. The relatively large 
and diverse reference dataset collated here allows a more comprehensive assessment across these 
combinations.

Following Li et al. (2022), we begin by evaluating the variation in each error metric with slope, 
for individual land cover classes. As an example, Figure 8 shows how RMSE varies with slope for six 
land cover classes (with others excluded given very little variation in slope). This allows a direct 
comparison of the influence of slope (within each subplot, how much does RMSE rise as slope 
increases?) versus land cover (for a given slope class, across all subplots, what is the variation in 
RMSE?). Taking SRTM as an example, we find that RMSE varies by up to 5.4 m by slope (within 
‘Bare/sparse vegetation’ land cover) compared with 6.2 m by land cover (between the ‘Tree cover’ 
and ‘Shrubland’ classes, within the highest slope class).
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Extending this approach, we assess for each error metric its variation by slope and by land cover 
class. Figure 9 summarises these results, presenting for each metric (a-d) both the mean of these 
assessed range values and the maximum range observed, with some clear patterns evident. Firstly, 
land cover is generally more important than slope, when assessed by median error (all DEMs), LE95 
(all DEMs) or RMSE (all but NASADEM). Secondly, GLO-30 is the DEM most impacted by land 
cover (across all metrics), likely reflecting the limited penetration capacity of its X-band radar. 
Thirdly, GLO-30, FABDEM and AW3D30 are the least impacted by slope, likely due to their deri
vation from higher-resolution DEMs which capture elevations on steep slopes more accurately, 
even when resampled to the same resolution as the other DEMs (Courty, Soriano-Monzalvo, 
and Pedrozo-Acuña 2019).

4.6. Most accurate DEM by land cover and slope

For many DEM users, the main question is which product is ‘most accurate’ for their particular 
application site. This is a nuanced question, which can be assessed in different ways using the results 
presented above, but we also try to summarise DEM performance as succinctly as possible, accord
ing to the two factors found to influence it most (land cover and slope).

Figure 10 considers all combinations of land cover (x-axis) and slope (y-axis) class for which data 
were available, indicating the best-performing DEM for each according to our four key metrics. 
Two versions of this performance grid are presented: (a) including FABDEM, openly available 
for download but requiring a licensing fee for commercial applications, and (b) excluding FAB
DEM, so as to show only DEMs free in terms of both access and cost.

Based on this comparison, FABDEM is generally the best-performing DEM, especially under 
‘Tree cover’ and ‘Mangroves’ (with forests one of their priorities for correction) and in low-slope 
‘Built-up’ areas. Interestingly, it is often outperformed by GLO-30 (its source DEM) in steeper 

Figure 8. Comparison of RMSE variation with slope (within each subplot) and land cover (across all subplots, for each slope class), 
for the six land cover classes for which significant variation in slope was found.
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slopes (except under ‘Tree cover’, where it is consistently most accurate, across all metrics). This is 
likely due to the smoothing filters applied during the post-processing of FABDEM, intended to 
reduce over-corrections and filter out noise.

If FABDEM is not an option (given its licensing fee for commercial applications), GLO-30 is the 
next best option under all land covers except for ‘Tree cover’, where NASADEM is more accurate 
across most metrics. While most error metrics are similar for the two GLO-30 formats, DGED 
(floating-point precision) should generally be preferred, given the quantisation effect of the inte
ger-precision DTED format on derived variables such as slope (Evans and Cox 1999).

4.7. Limitations

We have not considered the potential impact of temporal variations amongst the DEMs, reference 
DTMs and analysis datasets (e.g. land cover) used here, aside from manually identifying and exclud
ing locations where significant topographical changes are likely (quarries and coastal cliffs). How
ever, this temporal variation may be significant, in terms of when each dataset was collected (with 
potential mismatches in surface conditions) and the duration of data collection (relevant to seasonal 
variation). As Li et al. (2022) point out, this is likely to be especially significant over the more vari
able land cover classes, such as wetlands, water bodies and developing urban areas. Furthermore, 
most of our reference DTMs are relatively recent (e.g. more than half date from 2018 or later), bias
ing our accuracy assessment towards DEMs developed using more recently-collected data 
(especially GLO-30 and, by extension, FABDEM).

Figure 9. Comparison of the range of metric values (by mean and maximum range value) when evaluated across land cover 
versus slope classes, to see which affects DEM error more.
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During the development of each DEM, elevations from other DEMs available at the time are 
used to fill voids, such that each is a composite product. We have simply evaluated each DEM as 
is, rather than attempting to account for the provenance of each grid cell or restricting our analysis 
to the ‘native’ data in each DEM.

Figure 10. Performance summary grids, indicating the best-performing DEM by land cover and slope class (where available) by the 
four key metrics, considering (a) all DEMs, and (b) excluding FABDEM (which requires a licensing fee for commercial applications).
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Finally, we have not evaluated the potential implications of the raster processing steps required 
to convert all DEMs and reference DTMs to a common spatial reference system. Vertical datum 
shifts may be the most significant of these, often relying on relatively coarse regional or global 
geoid models to estimate the shift to be applied to each grid cell, introducing uncertainty which 
we have not attempted to quantify.

5. Conclusions

Regional-scale flood models often rely on topographic data from one of the global DEMs, despite 
known vertical inaccuracies resulting from the limited ability of spaceborne sensors to capture the 
true ground surface or precisely geolocate imagery. In this study, we assessed the vertical accuracy 
of five contemporary DEMs using a diverse collection of high-accuracy reference datasets (derived 
from airborne LiDAR surveys), selected to represent the biophysical variations in flood-prone areas 
globally. The best-performing DEMs were those derived from the most recent mission (TanDEM- 
X): the Copernicus DEM GLO-30 DGED (although the short wavelength X-band radar struggled to 
penetrate tree canopies) and FABDEM (which used random forest models to predict and correct 
vertical biases associated with forests and buildings in GLO-30 DGED). However, performance var
ied somewhat depending on the land cover, terrain slope and error metric used, such that the ‘best’ 
DEM for a given application will depend on the local biophysical conditions and the metric(s) of 
particular relevance.

We found land cover to be the most significant factor influencing vertical errors, with tree 
cover especially problematic for all DEMs, although those derived from longer wavelength C- 
band radar (SRTM and NASADEM) seemed better able to penetrate vegetation canopies. 
Slope was clearly associated with higher errors too, especially in terms of wider spreads (due 
to a mix of positive and negative deviations, whereas errors due to land cover tended to have 
a positive bias). Sensitivity to slope varied by DEM though, with those derived from higher-res
olution products (AW3D30, GLO-30 and FABDEM) found to be less sensitive. The influence of 
terrain aspect on error is less consistent and may be a function of the varying geolocation errors 
affecting the individual scenes merged to produce a given DEM tile. Preliminary results suggest 
that AW3D30 and GLO-30 in particular may be subject to systematic (but sub-pixel) offsets that 
could be corrected in future versions. However, this should be evaluated using a larger collection 
of steep slope sites, since our reference data are biased towards the lower slopes found in flood- 
prone areas.

In conclusion, we found FABDEM to be the most accurate DEM overall (especially for 
forests and low-slope terrain), suggesting that its error correction methodology is effective at 
reducing large positive errors in particular and that it generalises well to new application 
sites. Where FABDEM is not an option (given licensing costs for commercial applications), 
GLO-30 DGED is the clear runner-up under most conditions, with the exception of 
forests, where NASADEM (re-processed SRTM data) is more accurate. Our results suggest 
that these newer DEMs should be the preferred inputs to future regional-scale flood models, 
although further assessments are needed with regards to hydrological derivatives (e.g. stream 
networks and catchment delineations) and simulated flood hazards (e.g. inundation depths 
and extents).
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7f). All (65) reference DTMs collated for this study are summarised in Table S1, including online access details wher
ever available.
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