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Cover: Locations on Kangaroo Island where wildfire frequency differed between 
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the wildfire only scenario had a higher freuqnecy than the prescribed burning 
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EXECUTIVE SUMMARY 
Understanding changing bushfire risks to people, property and biodiversity is a 
key knowledge gap in many states and territories across Australia, including 
South Australia. In the wake of the 2019/2020 bushfires which had significant 
impacts on all three of these values across South Australia, understanding fire risks 
and potential fire impacts is crucial for making informed management decisions 
into the future. In our study we used a Fire Regime and Operations Simulation Tool 
(FROST) to model fire risk on Kangaroo Island over 50 years. We estimated the 
impacts of simulated fires on human life, property and biodiversity for three 
management scenarios (wildfires only and two prescribed burning scenarios). 
We found that prescribed burning resulted in a small decline in the frequency of 
wildfires compared to the wildfire only scenario and a lower frequency of both 
very high and extreme intensity fires. Despite a lower frequency of fires overall, 
the likelihood of very high or extreme intensity fires happening at least once over 
50 years increased.  

Despite reduced frequency of bushfires during wildfire seasons, exposure to 
people and property did not change between scenarios, probably because the 
extent of fires remained unchanged. Prescribed burning also resulted in a greater 
area burnt before minimum Tolerable Fire Interval (TFI) than wildfires alone. This is 
because prescribed burn efforts reduce the age classes of the remnant 
vegetation, resulting in the exposure of a larger proportion of vegetation below 
minimum TFI during the wildfire season.  

These results present a preliminary understanding of fire risk on Kangaroo Island. 
The methods developed here could be applied to a range of case study sites in 
South Australia and may provide helpful estimates of future fire risk which could 
be incorporated into management decisions throughout the state. 

 



RISK MODELLING FOR KANGAROO ISLAND – BLACK SUMMER FIRES SOUTH AUSTRALIA | REPORT NO. 684.2021 

 6 

INTRODUCTION 
Bushfires present increasingly high risks to human life, property and biodiversity 
around the globe (Banks, Knight, McBurney, Blair, & Lindenmayer, 2011; Borchers 
Arriagada et al., 2020; R. Bradstock, Penman, Boer, Price, & Clarke, 2014; Higuera 
& Abatzoglou, 2021). Understanding and predicting bushfire risk to these assets is 
a key knowledge gap in many management jurisdictions around Australia. This 
gap in knowledge is only increasing under the impacts of climate change and 
predicting fire risk is fundamental for supporting future management decisions. 
The 2019/2020 bushfire season in Australia resulted in an unprecedented area of 
high-severity fires which impacted ecosystems across south eastern Australia and 
had significant impacts on people and property (Collins et al., 2021b; Filkov, Ngo, 
Matthews, Telfer, & Penman, 2020). Therefore, it is imperative that the risk of such 
megafires reoccurring is predicted into the future and where possible 
management actions should mitigate the potential risks to humans and 
biodiversity. 

Understanding the risks of future fire requires some knowledge of how fire regimes 
are likely to shift going forward. Fire regimes are repeated patterns of burning, 
characterised by certain fire characteristics such as frequency, intensity, size, 
season, type and extent (Archibald et al., 2018; Gill, 1975; Murphy et al., 2013). 
Weather, fuel load, vegetation type and human activities can all influence fire 
behaviour and fire regimes (R. A. Bradstock, 2010). Changes to natural fire 
regimes can be important for influencing species richness and community 
composition (Andersen, Penman, Debas, & Houadria, 2009; Penman, Keith, et 
al., 2015; Swab, Regan, Keith, Regan, & Ooi, 2012). Inappropriate fire regimes can 
have significant long-term consequences for biodiversity (Banks et al., 2011; 
Enright, Fontaine, Lamont, Miller, & Westcott, 2014; Penman et al., 2011). 
Management agencies often attempt to reduce the risks caused by changing 
fire regimes through various management strategies, mostly focusing on fuel 
management i.e. thinning, clearing and prescribed burning (H. Clarke, Tran, et 
al., 2019; Florec, Burton, Pannell, Kelso, & Milne, 2020).   

Previous work has demonstrated that management through fuel treatments can 
reduce risks but the placement and strategy of treatments is critical (R. A. 
Bradstock et al., 2012; Finney et al., 2007; Penman, Ababei, Chong, Duff, & 
Tolhurst, 2015; Penman, Bradstock, & Price, 2014; Plucinski, 2012). Implementing 
management actions, such as prescribed burns, can be difficult because they 
are costly, and cannot cover all affected areas (Bradshaw et al., 2013; Penman 
et al., 2011). Moreover, implementing optimal management strategies to reduce 
life and house loss is likely to require a different solution to those aimed at 
managing biodiversity (Bentley & Penman, 2017; Driscoll et al., 2016; Penman, 
Ababei, et al., 2015; Penman et al., 2011). Identifying appropriate fire 
management strategies which protect people and property, as well as 
biodiversity, is of critical importance going forward to minimise risks associated 
with changing fire regimes.  

There are several existing fire simulators which seek to understand the effects of 
potential management actions on fuel and fire behaviour. One of the most 
commonly used tools for modelling fire behaviour is PHOENIX RapidFire (hearafter 
PHOENIX ; Penman et al., 2015; Tolhurst, Shields, & Chong, 2008). This tool 
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incorporates active suppression efforts alongside various fuel management 
strategies (Penman et al., 2013). PHOENIX is commonly used by fire management 
agencies in south and eastern Australia (Penman, Ababei, et al., 2015). While this 
tool is very useful for modelling single fire events, it does not model fire regimes 
over multiple years under changing fuel and weather.  

In our study, we use a recently developed fire regime simulator “Fire Regime and 
Operations Simulation Tool” (FROST) which incorporates the PHOENIX fire 
behaviour models with Bayesian Networks to predict changes in the fire regime 
given ignition likelihoods, fuel accumulation and management efforts (Penman, 
Ababei, et al., 2015). We simulate changing fire regimes over 50 years on 
Kangaroo Island, South Australia (SA), under a wildfire only scenario and two fuel 
management strategies (low and high prescribed burning) and analyse the risks 
to human life, property and biodiversity. This project is a first attempt to apply 
FROST simulations in SA and will serve as a foundation for future projects. Results 
of this study will provide insights to fire managers about possibilities of using FROST 
to predict risk across SA and to make informed decisions about future fuel 
management actions. 
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METHODS 

STUDY AREA 

This project focuses primarily on Kangaroo Island but collates data from across 
the state and creates the opportunity for future simulations. Kangaroo Island is 
an ~4400 km2 island located 112 km southwest of Adelaide (Figure 1) with a 
population of around 4259 people (www.abs.gov.au, accessed 10th May 2021). 
The Island is a biodiversity hotspot and approximately 65 percent of it is protected 
under public and private agreements, with half the remnant native vegetation 
intact (https://www.australianwildlife.org, accessed 10th May 2021). However, 
during the Black Summer bushfires, ~211,000 hectares of the 440,500-hectare 
island (approximately half) burnt in high severity fires resulting in devastating 
impacts for biodiversity and people (Filkov et al., 2020). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1: LOCATION OF KANGAROO ISLAND (OUTLINED IN RED) RELATIVE TO AUSTRALIA (TOP LEFT PANEL) AND THE COAST OF SOUTH AUSTRALIA (TOP 
RIGHT PANEL). 

MODELLING APPROACH 

Here we primarily use FROST, a fire regime model that builds on the strength of 
existing fire behaviour models and Bayesian networks, to predict wildfire risk. 
FROST uses a series of machines which represent an entity or model used in the 
fire regime program, i.e., the ignition machine is the ignition model used to 
predict ignition location and frequency. Data inputs for each machine must be 
processed in advance. A separate data preparation programme (FROMAGE) 
takes the raw machinery data required to run a FROST simulation, validates and 
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modifies it for use in FROST (accessed May 31st 2021, 
http://frostfamily.bushfirebehaviour.net.au/fromage-documentation).  

The results of each simulation are stored in SQLite databases. These FROST outputs 
can be utilised in multiple machines of a post-processing programme called 
FRAPPE which calculates impacts on a range of assets, i.e., biodiversity, people 
and property (accessed May 31st 2021, 
http://frostfamily.bushfirebehaviour.net.au/frappe-documentation/). The 
modelling approach employed in this research consists of three stages using the 
three main software applications in the FROST family (accessed May 31st 2021, 
http://frostfamily.bushfirebehaviour.net.au/): 1) preparation of data in 
FROMAGE to ensure compatibility with FROST, 2) running simulations in FROST and 
3) post-processing of FROST outputs in FRAPPE to calculate impacts on people, 
property and biodiversity. At the first stage the data required to run FROST is 
collected and prepared. The most important aspect of this is ensuring that all the 
data is in the correct coordinate reference system and at the required resolution. 
The data is then processed in FROMAGE which ensures it is clipped to the extent 
of the study site and is compatible for use within FROST. A series of simulations are 
then run in parallel within FROST (stage two) and the resulting outcomes in are 
processed using FRAPPE (stage three). 

Stage one: Data collection and preparation 
Since FROST has not yet been tested in SA, this was the first use of the program 
within the state using SA data. The essential part of this modelling framework 
(FROMAGE + FROST + FRAPPE) is geographical coordinates. These coordinates 
use a specific coordinate reference system (CRS), depending on the location of 
the study region. Initial development of FROST incorporated EPSG:3111, 
GDA94/Vicgrid94, EPSG:3308 and GDA94/NSW Lambert coordinates as baseline 
CRSs. A crucial activity in this project was to adapt FROST to run simulations in SA, 
requiring a new CRS system to be incorporated – EPSG:3107, GDA94/SA Lambert.  

Several machines are required to run a FROST simulation, but the main machines 
used to drive the simulations run here are the fuel, ignition, planned burn, post-
processing and weather machines. We collected and processed the data 
required to run these machines into the correct formats and coordinate 
reference system (EPSG:3107). The weather machine used daily weather 
conditions (e.g., max forest fire danger index [FFDI]) to determine the number of 
ignitions and hourly weather to simulate fire behaviour and spread. We used 
NARCLIM weather data which provides high resolution climate change 
projections based on four global climate models (MIRIC, ECHAM, CCCMA and 
CSIRO Mk3.0). This weather data provides outputs for several variables including 
temperature, precipitation, windspeed, humidity etc (accessed 31 May 2021 
https://climatechange.environment.nsw.gov.au/Climate-projections-for-
NSW/About-NARCliM). Here we used the CSIRO Mk3.0 2020 to 2039 (near future) 
model using the RCP 8.5 emission pathway (NARCLIM CSIRO Mk3.0 R1; Olson, 
Evans, Di Luca, & Argüeso, 2016). The ignition machine used Bayesian Networks 
to simulate ignition probability based on empirical models built by Clarke et al. 
(2019). The number and time of ignitions provided by the DEWNR were used to 
place potential ignitions across Kangaroo Island. Ignition probability was then 
determined based on distance to roads, rainfall, FFDI and housing density data.  
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The fuel machine simulated changes in fuel hazard across the landscape for 
each fuel strata (surface, near-surface, elevated and bark hazard) based on the 
models produced by McColl-Gausden et al, (2020). Th fuel machine uses fuel 
hazard scores by strata collected from field assessments undertaken between 
1995-2017, primarily from the study area (Victoria), but also included records from 
adjacent states. The fuel model uses predictor variables selected from three key 
drivers of vegetation distribution: climate and soil (as an indicator of vegetation 
productivity; Hagger, Koch, Chatzisarantis, & Orbell, 2017) and fire history 
(represented by time-since-last prescribed fire or wildfire; Chapin, Bret-Harte, 
Hobbie, & Zhong, 1996; Nano & Clarke, 2008). Soil variables are the most 
influential of the predictor variables for determining all fuel hazard ratings, with 
some exceptions for bark hazard. Relationships with fuel hazard scores of the 
most important climate variable (precipitation in the warmest quarter) vary by 
fuel strata as did relationships of time since fire with extreme fuel hazard. 
Probability of extreme fuel hazard in all fuel strata initially increases in this model 
until approximately 10-20 years. Thereafter, the probability of extreme fuel hazard 
plateaus for surface and bark strata but gradually decreases for near-surface 
and elevated fuel hazard strata to 100 years 

Time since fire data were calculated from the SA fire history data provided by 
DEWNR up until the end of the 2021 fire season for SA. These machines provided 
the baseline data required to run FROST for each day in the simulation. We also 
used the fuel treatment manager to test different management scenarios and 
their impacts on fire behaviour and predicted risk. Planned burns were driven by 
selection algorithm (described below) inputted by the user and the fuel 
treatment machine simulates the burns in PHOENIX. Post-processing was 
conducted through a post-processing machine which uses a separate software 
(FRAPPE) to conduct calculations of fire impact on biodiversity, people and 
property (described below). 

Stage two: Simulation fire regimes 
We used FROST to simulate fire impacts on Kangaroo Island using current climate 
models. FROST uses PHOENIX models to simulate single fire events and the spread 
of fire from individual ignition locations (Penman, Ababei, et al., 2015; Tolhurst et 
al., 2008). The model uses daily weather data to predict ignition occurrence and 
rate. If one or more ignitions are predicting in the ignition model, the fire 
behaviour model is initiated with hourly weather. All ignitions are run concurrently 
and once the fires are complete for a day or days fuel consumption is calculated 
to estimate the remaining fuel at each site. At the end of the season fuels are 
grown based on fuel accumulation curves. Fuel treatments are implemented at 
the end of each wildfire season and are also run through the fire behaviour 
model to determine their impacts on fuel consumption. At the end of both 
wildfire and planned burn seasons, annual risk estimates are calculated for 
several asset types (Penman, Ababei, et al., 2015). We ran our simulations for 50 
years in total beginning in 2020 and ending in 2070. For each scenario we 
repeated our simulations 50 times (replicates) to capture environmental 
stochasticity on our results. We ran three management scenarios; 1) wildfires only, 
2) low prescribed burning efforts (~1%; hereafter scenario one) and high 
prescribed burning efforts (~5%; hereafter scenario two). 
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Stage three: Calculating fire impacts 
Knowing how fires behave and their impacts on the landscape from the FROST 
simulations, we can calculate the fire’s impacts on asset values of interest. Post-
processing seeks to calculate these impacts using several post-processors 
accessible in the FRAPPE application. Each post-processor is a separate unit 
which contains an algorithm(s) to identify the impacts of a fire on a value of 
interest. In our study we analysed biodiversity, life and house loss.  

The biodiversity post-processor calculates the total area (hectares) affected by 
fire before minimum Tolerable Fire Interval (TFI). Any cells which are impacted by 
fire, i.e., where intensity and rate of spread is greater than zero are examined 
and their time since fire (based on fire history) is calculated. If the time since fire 
is lower than the minimum TFI for that vegetation type, it is counted towards the 
total area burnt before TFI. This measure provides an estimate of how early age 
class vegetation is impacted by wildfire and an approximation of the relative risk 
towards biodiversity. The house loss post-processor uses a housing density layer 
supplied by the user to calculate the number of houses per cell exposed and lost 
to fire and then summing these values for each year. People exposed to fire was 
calculated by dividing the total population by the total number of houses on 
Kangaroo Island to get an average number of people per house. This value is 
then multiplied with the housing density layer and the number of people exposed 
is a sum of the values in each cell affected by fire. Estimated lives lost is 
determined using method of (Harris, Anderson, Kilinc, & Fogarty, 2012) from the 
number of people exposed. 

Management scenarios 

We establish three simulation scenarios;  

1) wildfires only,  

2) wildfire plus low prescribed burning (scenario one) and,  

3) wildfires plus high prescribed burning (scenario two).  

The prescribed burning machine in FROST uses burn block shapefiles with defined 
fuel management zones to assign prescribed burning efforts across the 
landscape. Burn block locations and categorisation were provided by DEWNR. 
Three fuel management zone (FMZ) types used on Kangaroo Island; asset 
protection, landscape management or bushfire moderation and unzoned. 
These FMZs do not cover the full extent of Kangaroo Island. Given the overall goal 
of the project was to test the effect of burning at a low and high percentage 
burn rate, prescribed burning efforts were split up for each scenario to maximise 
the chances of reaching these targets within the FMZs (Table 1). 
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Scenario 1- Asset 

protection 

2- Landscape 

management 

3- Unzoned 

Wildfire only  0 0 0 

Prescribed 

burning 

(scenario one) 

20% 10% 1% 

Prescribed 

burning 

(scenario two) 

20% 10% 5% 

TABLE 1: PERCENTAGES BURNT PER YEAR IN EACH FUEL MANAGEMENT ZONE ON KANGAROO ISLAND. 

We used the minimum TFI algorithm programmed in FROST to assign prescribed 
burns within the ecological limitations of Kangaroo Island vegetation. Each 
vegetation type is assigned a minimum TFI value. During each planned burn 
season, the fire history and vegetation type for each burn block is analysed. Each 
burn-block is checked and burnt if it contains at least 80 percent of the area that 
is older than the minimum TFI. The algorithm continues to select and burn burn-
blocks until the total target percentage for each FMZ in reached during the 
planned burn season. 

Data analysis 

Following post-processing, the results from FRAPPE and FROST were analysed in R 
version 3.6 (R Development Core Team, 2017). We considered three measures 
describing the fire regime and fire risk;  

1) area burnt by wildfire (total and annual),  

2) burn frequency, and  

3) frequency of very high and extreme intensity fires.  

Area burnt is calculated by taking the total area burnt by each fire simulated, 
summing the values for each fire in a year and taking an average across the 50 
years and again over 50 replicates. Burn frequency is calculated for each cell in 
the landscape burnt with an intensity greater than zero. We summed the burn 
frequency for each cell over the 50 years and take an average over 50 
replicates. Fires were categorised as very high intensity if they were between 5000 
and 10000 kW and extreme intensity fires were any fires above 10000 kW 
(Bradshaw et al., 2013). We then follow the same procedure as fire frequency 
and count the number of times a cell is burnt. We also present three measures of 
risk from the post-processing results;  

1) area burnt before minimum TFI,  

2) house loss and houses exposed; and  
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3) life loss and people exposed.  

Area burnt before TFI is calculated using the same method as previously. 
However, cells are only counted towards the total area burnt if the vegetation is 
below the minimum TFI when it was burnt. House and life loss metrics are 
averaged across the 50 replicates. We examined the area burnt for prescribed 
burns. However, for the remaining metrics we analysed wildfire seasons only since 
we are primarily concerned with how different management options impact 
wildfires. We took an average of all these values across the 50 replicates for each 
scenario. 

RESULTS 

FROST results 

1) Area burnt 

An average annual area of 34,221 and 34,142 hectares were burnt during 
prescribed burning in scenario one and scenario two respectively (Figure 2). This 
rate of burning constitutes ~7.8 percent of the total landscape burnt annually. 
The two prescribed burning scenarios did not significantly differ in the total or 
annual area burnt (Figure 2). This is likely due to the similar burn percentages in 
each FMZ (Table 1). Had we altered burn percentages more, we may have seen 
a greater difference between the two prescribed burning scenarios in the 
prescribed burning season. We do find the differences between scenarios are 
more pronounced when looking at the wildfire seasons as opposed to the 
prescribed burning season. 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2: ANNUAL AND TOTAL AREA BURNT BY PRESCRIBED BURNING IN THE TWO PRESCRIBED BURNING SCENARIOS RUN. 

Figure three shows a notched boxplot of annual and total area burnt during 
wildfire seasons in each scenario. Where the notches on these boxplots do not 
overlap there is a statistically significant difference between the mean values 
shown. Prescribed burning scenario one resulted in a statistically significant 
increase in the total and annual area burnt compared to the wildfire only 
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scenario. However, prescribed burning scenario one still overlaps with the 
second prescribed burning scenario suggesting the observed differences 
between these two results were not statistically significant. Prescribed burning 
scenario two also did not significantly differ from the wildfire only scenario (Figure 
3). These results could be explained by stochasticity in placement of prescribed 
burns between scenarios which is also evident in the significant variation 
observed around the mean area burnt for each scenario. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3: AVERAGE ANNUAL AND TOTAL AREA BURNT (HA) FOR THE THREE MANAGEMENT SCENARIOS RUN IN FROST. 

2) Fire frequency 

Burn frequency did not change significantly between the three management 
scenarios (Figure 4). All three scenarios resulted in a minimum burn frequency of 
one which demonstrates that each cell was burnt due to wildfire at least once 
on average across the 50-year simulation. Wildfire only scenarios do result in a 
greater maximum burn frequency of four compared to a maximum burn 
frequency of three in the two prescribed burning scenarios. This indicates that 
the prescribed burning scenarios can reduce the frequency of burns in some 
high-risk areas of the landscape, although this change is minimal. Despite this 
change in frequency, we do find that the total area burnt during the wildfire 
season is increased even when prescribed burning is used (Figure 3). 
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FIGURE 4: AVERAGE FREQUENCY OF WILDFIRES ON KANGAROO ISLAND ACROSS 50 YEARS OF SIMULATIONS IN FROST. RASTERS ARE SCALED BETWEEN 
A MINIMUM OF ONE AND A MAXIMUM OF 4. ZERO IS NOT INCLUDED AS ALL CELLS IN THE LANDSCAPE WERE IMPACTED BY WILDFIRES BY THE END OF 
THE 50-YEAR SIMULATION AND WHEN AVERAGED ACROSS REPLICATES. 

Across all three scenarios, fire frequency was highest in western half of the Island, 
particularly in areas with a greater proportion of intact native vegetation such as 
in the Flinders Chase National Park. This was also one of the main locations 
impacted heavily by the 2020 bushfires. In the southern half of the Flinders Chase 
National Park fewer bushfires were predicted than on the rest of the Island. This is 
potentially due to the recent fire history we included which incorporates the 2020 
bushfires. Wildfires shifted spatially under prescribed burning scenarios compared 
to the wildfire only scenario. Figure five shows locations where wildfires occurring 
in prescribed burning scenarios one and two were different to those in the wildfire 
only scenario. Zero values indicate frequency was unchanged between wildfire 
seasons in each scenario. Values below zero show locations where frequency 
was higher in the wildfire only scenario and above zero shows locations where 
frequency is higher in the prescribed burning scenarios (Figure 5). 
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FIGURE 5: LOCATIONS ON KANGAROO ISLAND WHERE WILDFIRE FREQUENCY DIFFERED BETWEEN THE WILDFIRE ONLY AND THE PRESCRIBED BURNING 
BURNING SCENARIOS. POSITIVE VALUES SHOW WHERE THE FREQUENCY OF WILDFIRES WAS HIGHER IN THE PRESCRIBED BURNING SCENARIO COMPARED 
TO THE WILDFIRE ONLY SCENARIO. NEGATIVE VALUES SHOW WHERE THE WILDFIRE ONLY SCENARIO HAD A HIGHER FREUQNECY THAN THE PRESCRIBED 
BURNING SCENARIO AND ZERO INDICATES NO CHANGE IN THE FREQUENCY OF WILDFIRES. 

3) Fire intensity 

Frequency of very high and extreme intensity wildfires also did not change 
significantly between scenarios (Figure 6). However, extreme intensity fires 
impacted a total of 34,751 hectares across all 50 years at least once in the wildfire 
only scenario compared to 40,915 and 40,414 hectares in prescribed burning 
scenarios one and two. Therefore, while frequency tends to go down in 
prescribed burning scenarios, there is a slightly greater extent experiencing very 
high or extreme intensity fires at least once. The maximum frequency of very high 
intensity fires observed was four for the wildfire only scenario and three in both 
prescribed burning scenarios. Again, there was a greater area impacted by very 
high intensity wildfires in the two prescribed burning scenarios. On average 
across all 50 years and replicates a total of 71,316 hectares experience at least 
one very high intensity wildfire in the wildfire only scenario. Prescribed burning 
scenarios result in 81,915 and 82,025 hectares for scenarios one and two 
respectively. 
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FIGURE 6: FREQUENCY OF EXTREME INTENSITY FIRES AVERAGED ACROSS REPLICATES AND YEARS FOR WILDFIRES IN THREE MANAGEMENT SCENARIOS 
ON KANGAROO ISLAND. 

The increased extent in very high and extreme intensity fires tends to corelate 
with areas of the landscape where predicted fire frequency was greater for 
prescribed burning scenarios (Figure 5). In the wildfire only scenarios extreme and 
very high intensity fires were more frequency around the western coastline 
(Figure 7). Comparatively, prescribed burning scenarios tend to result in a higher 
frequency of extreme or very high intensity fires further inland in the Flinders 
Chase National Park than the wildfire only scenario (Figure 7). 
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FIGURE 7: LOCATIONS ON KANGAROO ISLAND WHERE THE FREQUENCY OF VERY HIGH AND EXTREME INTENSITY WILDFIRES DIFFERED BETWEEN THE 
WILDFIRE ONLY AND THE PRESCRIBED BURNING BURNING SCENARIOS. POSITIVE VALUES SHOW WHERE FREQUENCY WAS HIGHER IN THE PRESCRIBED 
BURNING SCENARIO COMPARED TO THE WILDFIRE ONLY SCENARIO. NEGATIVE VALUES SHOW WHERE THE WILDFIRE ONLY SCENARIO HAD A HIGHER 
FREUQNECY THAN THE PRESCRIBED BURNING SCENARIO AND ZERO INDICATES NO CHANGE IN THE FREQUENCY OF WILDFIRES. 

FRAPPE results 
The total area burnt per year (averaged across replicates) before TFI was 
significantly higher in both prescribed burning scenarios than in the wildfire only 
scenarios (Figure 8). This is likely because prescribed burning results in an overall 
lowering of the age classes. Therefore, when wildfire season is implemented in 
FROST, a greater proportion of the vegetation burnt is below the minimum TFI. 
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FIGURE 8: AREA BURNT (HECTARES) BEFORE MINIMUM TFI FOR ALL THREE MANAGEMENT SCENARIO. 

Conversely, for both people and property, prescribed burning did not 
significantly impact the predicted number of these values exposed or lost (Figure 
9). Slight changes between scenarios in the number of houses and people 
exposed to fire likely reflect the shifting of fire impacts. This is due to spatial 
stochasticity or cases where prescribed burning causes changes in the locations 
affected by wildfire compared to wildfire only scenarios, exposing more people 
and property (Figure 5). However, all three scenarios result in house and life loss 
values just above or on zero and they do not change based on the levels of 
prescribed burning. 
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FIGURE 9: PREDICTED NUMBER OF HOUSES AND PEOPLE EXPOSED AS WELL AS THOSE LOST PER YEAR FOR THREE MANAGEMENT SCENARIOS. 
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DISCUSSION 
Improving our understanding of bushfire risk is an essential task to inform future 
management practices and to protect human life, property and biodiversity 
(Ager, Kline, & Fischer, 2015; Banks et al., 2011; Torre & Díaz, 2004). During the 
2019/2020 Black Summer fires, the extent of high severity wildfires was larger than 
previously recorded and the total area burnt amounted to almost 19 million 
hectares across South Eastern Australia (Collins et al., 2021a; Filkov et al., 2020). 
House losses in SA were the highest in 20 years and across the continent, impacts 
to people, property and biodiversity were unprecedented (Filkov et al., 2020). 
Predicting the likelihood and frequency of future megafires and understanding 
the risks to biodiversity and people is essential going forward. This study aimed to 
predict risks of changing fire regimes on people, property and biodiversity on 
Kangaroo Island and identify the impacts of three management scenarios on 
these risks. This is the first time FROST has been used to predict changing bushfire 
risks in SA and to estimate risks to assets. The results we have presented here 
provide the first insight into how fire regimes are likely to shift in terms of extent, 
frequency and intensity on Kangaroo Island. From these results we are better 
able to understand the benefits and limitations of different management 
strategies on fire risk and the likely impacts for people, property and biodiversity.  

Fire frequency during wildfire seasons is reduced by prescribed burning efforts, 
but this reduction in frequency was not influenced by the level of prescribed 
burning used (Figure 4). This is probably because the two prescribed burning 
scenarios we tested only differed (in terms of percentage burnt) in the currently 
unzoned FMZs which constitutes less than one percent of the ~120,000 hectares 
worth of burn blocks. Asset protection and landscape management zones were 
both burned at the same percentage between scenarios (Table 1). Increased 
burning in these zones in scenario two may generate greater differences in 
outcomes between the two prescribed burn scenarios and improve our ability to 
prioritise management strategies for Kangaroo Island. Despite the slight decline 
in fire frequency in prescribed burning scenarios, we see only a small shift in the 
total and annual area burnt between the wildfire only scenario and the first 
prescribed burning scenario (Figure 3). However, there was no difference 
between the wildfire only and second prescribed burning scenario, or the latter 
and prescribed burning scenario one (Figure 3). While a decline in the frequency 
of very high and extreme intensity fires was observed, we saw an overall increase 
in the area of the landscape which experienced very high or extreme intensity 
fires at least once (Figure 6). This suggests that prescribed burning scenarios could 
result in a greater total area burnt over the next 50 years and a greater area 
burnt by very high and extreme intensity fires.  

These results concur with previous research which suggests that prescribed 
burning can reduce the frequency and intensity of wildfires but ultimately the 
levels of burning required to achieve these outcomes result in a greater area of 
the landscape burned overall (King, Cary, Bradstock, & Marsden-Smedley, 2013; 
Penman et al., 2011; Price, Pausas, et al., 2015; Price, Penman, Bradstock, Boer, 
& Clarke, 2015). Moreover, the effectiveness of prescribed burns is dependent on 
the likelihood of a wildfire encountering one or more treated areas (Agee & 
Skinner, 2005; Finney et al., 2007; Price, Penman, et al., 2015). This was also 
supported in our results as we saw a spatial shift in the impacts of wildfires across 
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Kangaroo Island under prescribed burning scenarios (Figure 5). Wildfires in our 
prescribed burning scenarios do not burn as frequently in some areas as the 
wildfire only scenario, suggesting prescribed burning was effective in these burn 
blocks. However, impacts seem to shift elsewhere the landscape, resulting in a 
higher fire frequency in areas where the wildfire only scenario did not impact.  

Our post-processing results show the impacts of frequent fuel reduction due to 
prescribed burning on the area burnt before TFI (Figure 8). When prescribed burns 
were applied, a greater proportion of the intact vegetation is below minimum 
TFI, resulting in a greater impact on biodiversity during wildfire seasons. Fire 
frequency is known to be important in Australian ecosystems (Andersen et al., 
2005; R. A. Bradstock, Bedward, Scott, & Keith, 1996; Penman et al., 2011) and 
can drive community composition and diversity (Andersen et al., 2009; Penman, 
Binns, Shiels, Allen, & Kavanagh, 2008; Penman & Towerton, 2008). It is however, 
unclear how prescribed burning efforts may impact species and populations 
long-term because few ecological studies have examined biodiversity response 
to the impacts of varying fire regimes and prescribed burning efforts (M. F. Clarke, 
2008; Penman et al., 2011). Further research is required to identify management 
techniques which result in appropriate fire regimes for maintaining biodiversity (R. 
A. Bradstock, Bedward, Kenny, & Scott, 1998; McCarthy, Possingham, & Gill, 
2001). These are likely to be different to those used to manage fire frequency and 
intensity for the purposes of protecting people and property (Bentley & Penman, 
2017; Driscoll et al., 2016; Penman, Ababei, et al., 2015). 

Fire management to date has focused primarily on reducing the incidence, 
intensity and extent of wildfires as these are the aspects of fire regimes which 
present the greatest risk to properties and human lives (Boer, Sadler, Wittkuhn, 
McCaw, & Grierson, 2009; Russell-Smith, Mccaw, & Leavesley, 2020). Our 
simulations found high predicted exposure of people and houses to wildfire, but 
with a resulting lower loss of life and property. These results did not differ between 
management scenarios and prescribed burning strategies tested did not appear 
to directly impact these assets. Future research should explore a greater variety 
of management scenarios (i.e. different levels and strategic placement of 
prescribed burning) and examine the impacts of these management scenarios 
under a variety of climate scenarios. This would help improve our understanding 
of how fuel management influences exposure of people and property to the 
direct impacts of wildfires. Future research should also aim to identify how the 
exposure of people and property through wildfire impacts these assets long-term, 
particularly when considering the less immediate hazards which accompany 
wildfires such as smoke.  

Wildfires release large amounts of smoke, which can pose a hazard to human 
health by impacting air quality. Global average wildfire emissions were 
estimated to be 2.2 billion tons per year from 1997 to 2016 (Magidimisha & Griffith, 
2017). Many wildfire emissions can have acute or long-term health implications 
on the exposed populations (Stone et al., 2019; WHO Regional Office for Europe, 
2013).Globally, average annual mortality from wildfire smoke is estimated to be 
339,000 deaths, with the worst impacted areas being sub-Saharan Africa and 
South east Asia (Johnston et al., 2012. Studies have also found an association 
between daily mortality from wildfires for all-causes of death, including 
cardiovascular disease (Reid et al., 2016). For instance, Borchers Arriagada et al., 
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(2020) estimated that bushfire smoke during the Black Summer fires was 
responsible for 417 excess deaths, 1124 hospitalisations for cardiovascular 
problems and 2027 for respiratory problems, and 1305 presentations to 
emergency departments with asthma. While not everyone who is exposed to 
thick smoke will have health problems, further research on the effects of exposure 
to wildfire smoke are warranted. Risks caused by wildfire smoke should be taken 
into consideration when estimating potential life loss from future wildfires and 
planning management strategies and suppression efforts. For example, due to 
higher exposure rates firefighters may be more at risk of long-term health issues 
related to smoke inhalation (Engelsman, Toms, Banks, Wang, & Mueller, 2020), 
therefore managing firefighters exposure and personal protective equipment 
during wildfire season is critical. Population exposure and respiratory health 
impacts of wildfire smoke is likely to grow in the future as global wildfire activity 
and human population growth both increase. 
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FUTURE RESEARCH 
One key outcome of this research was the establishment of a protocol for 
predicting fire risk in SA. This research has established the foundations required to 
expand our study and examine fire risks in different parts of the state. Future 
research should capitalise on this capability to expand and explore bushfire risk 
under different climate scenarios and alternative management approaches to 
those presented here. For example, different levels of prescribed burning, the use 
of fuel breaks, or increased suppression efforts would likely change our estimates 
of wildfire risk on Kangaroo Island. We were only able to explore one climate 
scenario here but to expand on this study, we could explore a series of climate 
models and make predictions using far future climate change scenarios (e.g., 
2060 to 2079). Future research should also conduct sensitivity analyses by varying 
the number of replicates used and exploring different lengths of simulations. This 
would improve the accuracy of our predictions of risk and establish a baseline 
against for the ideal simulation protocol in SA going forward.  

We have shown here that a greater area of vegetation is burnt before minimum 
TFI in the prescribed burning scenarios compared to wildfires only. Prescribed 
burning efforts are known to influence richness, composition, diversity and 
potentially even persistence  (Andersen et al., 2009; Penman et al., 2008; Penman 
& Towerton, 2008). However, it is still unclear what the medium to long-term 
implications of such actions are to biodiversity beyond immediate changes to 
vegetation or community composition. Future research could utilise the results of 
FROST simulations and  population studies for key species to examine the impacts 
of wildfires on medium and long-term viability (Penman, Keith, et al., 2015; Swab 
et al., 2012). There are several approaches which can be used to model changes 
in persistence through time including Bayesian Networks and population viability 
analyses (Akçakaya & Root, 2005; Visintin et al., 2020). Providing estimates of 
abundance and long-term population persistence for keystone species under 
current and future fire regimes may provide insight for managers on how 
biodiversity holistically is impacted by shifting fire risks. Such analyses would inform 
both fire management practices and could help us better understand the 
effectiveness of conservation efforts under the pressure of changing fire regimes. 

Lastly, current methods of estimating risks to people and property consider only 
the direct impacts of fire and fail to account for the less immediate hazards 
caused by wildfires. These include the health hazard risks which may increase life 
loss (through smoke inhalation or long-term health impacts), as well as the risks to 
people’s livelihood (loss of income through tourism or agriculture, etc). Future 
research should examine what the long-term health implications in increase fire 
frequency are as well as the economic risks associated with changing fire 
regimes. This may give us a more accurate representation of the actual impacts 
of wildfires on people and help to direct management efforts to minimise the 
most at-risk communities. 
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CONCLUSIONS 
Our simulations explore only a small set of the management strategies and 
climate scenarios available. While we do observe a decline in the frequency of 
wildfires in prescribed burning scenarios, these scenarios result in a greater area 
burnt by very high and extreme intensity fires at least once across the 50-year 
simulations. We also found that prescribed burning results in more area burnt 
before minimum TFI during wildfires and therefore prescribed burning is likely to 
have an impact on biodiversity on Kangaroo Island. However, we see no 
difference in the number of houses or people exposed to wildfire between 
scenarios. This research has highlighted that ideal fuel management practices 
on Kangaroo Island should be carefully considered and strategically planned to 
manage risks to different asset values. It has also demonstrated how FROST can 
be used to predict bushfire risks in SA and explore different management options. 
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